Accepted Manuscript

A novel strategy for the removal of rhodamine B (RhB) dye from wastewater by coal-based carbon membranes coupled with the electric field

Ping Tao, Yuanlu Xu, Chengwen Song, Yanyan Yin, Zaili Yang, Shihong Wen, Shiyu Wang, Hui Liu, Shangzhe Li, Chen Li, Tonghua Wang, Mihua Shao

PII: \$1383-5866(16)31756-7

DOI: http://dx.doi.org/10.1016/j.seppur.2017.02.014

Reference: SEPPUR 13543

To appear in: Separation and Purification Technology

Received Date: 18 September 2016 Revised Date: 31 January 2017 Accepted Date: 5 February 2017

Please cite this article as: P. Tao, Y. Xu, C. Song, Y. Yin, Z. Yang, S. Wen, S. Wang, H. Liu, S. Li, C. Li, T. Wang, M. Shao, A novel strategy for the removal of rhodamine B (RhB) dye from wastewater by coal-based carbon membranes coupled with the electric field, *Separation and Purification Technology* (2017), doi: http://dx.doi.org/10.1016/j.seppur.2017.02.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A novel strategy for the removal of rhodamine B (RhB) dye from

wastewater by coal-based carbon membranes coupled with the electric

field

Ping Tao^a, Yuanlu Xu^a, Chengwen Song^{a,*}, Yanyan Yin^a, Zaili Yang^a, Shihong Wen^a, Shiyu Wang^a, Hui Liu^a,

Shangzhe Li^a, Chen Li^a, Tonghua Wang^{b,**}, Mihua Shao^a

^a College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026,

China

^b State key Laboratory of Fine chemicals, Carbon Research Laboratory, School of Chemical Engineering, Dalian

University of Technology, 2 Linggong Road, Dalian, 116024, China

Abstract: A novel strategy is proposed to treat rhodamine B (RhB) wastewater by integrating the coal-based carbon

membrane with an electric field. The effects of various parameters including electric field intensity, RhB

concentration, and solution pH on separation performance of the treatment system are investigated. The degradation

intermediates of RhB are detected by high-performance liquid chromatography/mass spectrometry (HPLC/MS).

The results show the introduction of the electric field is found to be quite effective in enhancing the permeability

and removal efficiency due to electrochemical oxidation. Under acidic condition, the treatment system possesses

good fouling resistance to RhB molecules, and demonstrates high permeability and removal efficiency. High RhB

concentration (>100 ppm) usually increases the load of the treatment system, resulting in low permeability and

removal efficiency due to insufficient degradation ability. N-de-ethylated intermediates and organic acids are

identified during the degradation process. Based on this result, the possible degradation pathways of RhB in the

treatment system are proposed.

Keywords: Carbon Membrane; Electric Field; Rhodamine B; Electrochemical degradation

1. Introduction

* Corresponding author: Fax: +86-411-84724342; E-mail: chengwensong@dlmu.edu.cn(C. Song); wangth@dlut.edu.cn(T. Wang)

1

Download English Version:

https://daneshyari.com/en/article/4990071

Download Persian Version:

https://daneshyari.com/article/4990071

Daneshyari.com