Accepted Manuscript

Blend membranes of poly(amide-6-b-ethylene oxide)/[Emim][PF $_6$] for ${\rm CO}_2$ separation

Yongtao Qiu, Jizhong Ren, Dan Zhao, Hui Li, Kaisheng Hua, Xinxue Li, Maicun Deng

PII: S1383-5866(16)31024-3

DOI: http://dx.doi.org/10.1016/j.seppur.2017.02.003

Reference: SEPPUR 13532

To appear in: Separation and Purification Technology

Received Date: 14 July 2016

Revised Date: 30 December 2016 Accepted Date: 1 February 2017

Please cite this article as: Y. Qiu, J. Ren, D. Zhao, H. Li, K. Hua, X. Li, M. Deng, Blend membranes of poly(amide-6-b-ethylene oxide)/[Emim][PF₆] for CO₂ separation, *Separation and Purification Technology* (2017), doi: http://dx.doi.org/10.1016/j.seppur.2017.02.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Blend membranes of poly(amide-6-b-ethylene oxide)/[Emim][PF₆] for CO₂ separation

Yongtao Qiu^{a,b}, Jizhong Ren^{a*}, Dan Zhao^a, Hui Li^a, Kaisheng Hua^a, Xinxue Li^a,

Maicun Deng^a

^a National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China

ABSTRACT

1-ethyl-3-methylimidazolium hexafluorophosphate ([Emim][PF₆]) was incorporated into poly(amide-6-*b*-ethylene oxide) (Pebax1657) to prepare blend membranes. The physical properties of Pebax1657/[Emim][PF₆] blend membranes were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). For Pebax1657/[Emim][PF₆] blend membranes, the melting peak of polyether (PE) segment disappeared when [Emim][PF₆] content reached 10 wt%, and the melting peak of [Emim][PF₆] appeared until [Emim][PF₆] content came up to 60 wt%, indicating the homogeneous mixing of [Emim][PF₆] and Pebax1657 for the prepared Pebax1657/[Emim][PF₆] blend membranes. According to FTIR, some interactions were formed between [Emim][PF₆] and PE segment. The gas transport properties of CO₂, N₂, CH₄ and H₂ for Pebax1657/[Emim][PF₆] blend membranes were also investigated. The incorporation of [Emim][PF₆] increased the gas solubility coefficients of CO₂, N₂, CH₄ and H₂,

^b University of Chinese Academy of Sciences, Beijing 100049, PR China

Download English Version:

https://daneshyari.com/en/article/4990086

Download Persian Version:

https://daneshyari.com/article/4990086

<u>Daneshyari.com</u>