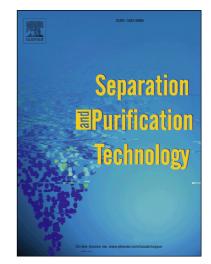
Accepted Manuscript

High-speed particle rotation for coating oil removal by hydrocyclone

Yuan Huang, Jian-ping Li, Yang-hong Zhang, Hua-lin Wang


PII: S1383-5866(16)32120-7

DOI: http://dx.doi.org/10.1016/j.seppur.2016.12.001

Reference: SEPPUR 13412

To appear in: Separation and Purification Technology

Received Date: 21 October 2016 Revised Date: 29 November 2016 Accepted Date: 3 December 2016

Please cite this article as: Y. Huang, J-p. Li, Y-h. Zhang, H-l. Wang, High-speed particle rotation for coating oil removal by hydrocyclone, *Separation and Purification Technology* (2016), doi: http://dx.doi.org/10.1016/j.seppur. 2016.12.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

High-speed particle rotation for coating oil removal by hydrocyclone

Yuan Huang¹, Jian-ping Li¹, Yang-hong Zhang¹, Hua-lin Wang^{1,2*}

¹ State Environmental Protection Key Lab of Environmental Risk Assessment and Control on

Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China

² State-Key Laboratory of Chemical Engineering, East China University of Science and

Technology, Shanghai 200237, PR China

Abstract: Hydrocyclone not only achieves centrifugal separation of solids and liquids but also

purifies oil-coated particles through rotational shear flow, resulting in high-speed particle rotation.

This study develops a method to detect microsphere rotation assisted by microfluidic and high-speed

imaging techniques. The developed method is applied to investigate the intensification mechanism of

particle rotation on de-oiling oil-coated particles by using hydrocyclone. Results show that the

microspheres exhibit high rotation speed of more than 1000 rad/s when translating near the wall. The

conical structure and inlet flow rate of hydrocyclone significantly affect the magnitude and

distribution of rotation speed in the equipment. An experiment on de-oiling real oil-coated spent

catalysts verifies the de-oiling intensification of the hydrocyclone, with the de-oiling efficiency being

promoted by a minimum of 12.87% based on stirred hydrothermal tank. The de-oiling intensification

mechanism is attributed to the strong resultant centrifugal force, whose direction periodically

changes because of particle rotation and revolution. Overall, this study provides guidance for the

design of washing hydrocyclones for oil-coated particles.

Keywords: Particle rotation; Oil-coated particle; Hydrocyclone; Swirling shear flow; Solid/liquid

separation

* Corresponding author at: Environmental Protection Key Laboratory of Environmental Risk

Assessment and Control on Chemical Process, East China University of Science and Technology,

130# Meilong Road, Shanghai 200237, PR China.

E-mail address: samwhl@ecust.edu.cn (H. L. Wang).

Download English Version:

https://daneshyari.com/en/article/4990143

Download Persian Version:

https://daneshyari.com/article/4990143

Daneshyari.com