Accepted Manuscript

A PLS model for predicting rejection of trace organic compounds by nanofiltration using treated wastewater as feed

Lena Flyborg, Berndt Björlenius, Magnus Ullner, Kenneth M. Persson

PII: S1383-5866(16)30841-3

DOI: http://dx.doi.org/10.1016/j.seppur.2016.10.029

Reference: SEPPUR 13299

To appear in: Separation and Purification Technology

Received Date: 27 June 2016
Revised Date: 20 October 2016
Accepted Date: 21 October 2016

Please cite this article as: L. Flyborg, B. Björlenius, M. Ullner, K.M. Persson, A PLS model for predicting rejection of trace organic compounds by nanofiltration using treated wastewater as feed, *Separation and Purification Technology* (2016), doi: http://dx.doi.org/10.1016/j.seppur.2016.10.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A PLS model for predicting rejection of trace organic compounds by nanofiltration using treated wastewater as feed

Lena Flyborg a,*, Berndt Björlenius b, Magnus Ullner c and Kenneth M. Persson

^aWater Resources Engineering, Lund University, P.O.B. 118, SE-221 00 Lund, Sweden ^bAlbanova Univ Center, KTH, School of Biotechnology, SE-106 91 Stockholm, Sweden ^cTheoretical Chemistry, Lund University, P.O.B. 124, SE-221 00 Lund, Sweden

* Corresponding author. Water Resources Engineering, Lund University, P.O.B. 118, SE-221 00 Lund, Sweden. Tel: +46 70 3750366. E-mail address: lena.flyborg@tvrl.lth.se

Abstract

In this study a Partial Least Squares Projection of Latent Structures (PLS) model has been developed for predicting the rejection of pharmaceutical residuals by nanofiltration (NF) using treated municipal wastewater as feed. The objective was to provide a practical tool for wastewater reuse facilities for estimating the rejection of emerging organic contaminants based on their physiochemical characteristics. The model was developed by identifying the important physiochemical properties of pharmaceutical residuals for rejection by NF. The investigated pharmaceuticals were those present in the effluent from Henriksdal wastewater treatment plant (WWTP), Sweden. The rejection, at volume reduction factors (VRF) ranging from 2 to 20, was examined in a NF pilot plant at two occasions. The important variables for rejection by NF were, in descending order: polarizability, globularity, ratio hydrophobic to polar water accessible surface area and compound charge.

Two studies were performed with a time interval of about a year with different wastewater matrices

Two studies were performed with a time interval of about a year with different wastewater matrices and age of membranes. For different VRFs, but in the same study, the model produced consistent predicted rejections. For the same VRF, but in the different studies, the regression lines were almost parallel, but with a deviation of about 7% for the predicted values. Most of the compounds were within the 95% prediction interval. The model also proved to be able to predict rejection using data from the literature. This confirms that the predictive PLS model can estimate the rejection albeit, with

Download English Version:

https://daneshyari.com/en/article/4990182

Download Persian Version:

https://daneshyari.com/article/4990182

<u>Daneshyari.com</u>