Accepted Manuscript

A diatomite coated mesh with switchable wettability for on-demand oil/water separation and methylene blue adsorption

Jian Li, Peng Guan, Yan Zhang, Bin Xiang, Xiaohua Tang, Houde She

PII: S1383-5866(16)31213-8

DOI: http://dx.doi.org/10.1016/j.seppur.2016.10.033

Reference: SEPPUR 13303

To appear in: Separation and Purification Technology

Received Date: 28 July 2016
Revised Date: 20 October 2016
Accepted Date: 22 October 2016

Please cite this article as: J. Li, P. Guan, Y. Zhang, B. Xiang, X. Tang, H. She, A diatomite coated mesh with switchable wettability for on-demand oil/water separation and methylene blue adsorption, *Separation and Purification Technology* (2016), doi: http://dx.doi.org/10.1016/j.seppur.2016.10.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A diatomite coated mesh with switchable wettability for on-demand oil/water separation and methylene blue adsorption

Jian Li*, Peng Guan, Yan Zhang, Bin Xiang, Xiaohua Tang, Houde She Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

Abstract

A diatomite coated mesh showing switchable wettability has been successfully fabricated via a spray-coating process. The switchable mesh allows separating various oil—water mixtures in one single device. The diatomite coated mesh operates in water-removing mode to permeate water in typical light oil—water mixtures. Moreover, the mesh can rapidly switch to oil-removing mode to permeate heavy oil in the heavy oil—water mixtures. Reversible transition between water-removing and oil-removing mode can be realized simply by prewetting the coated mesh with water and corresponding heavy oils alternately. In addition, the switchable mesh showed high separation efficiencies above 99.2 % for a series of light or heavy oil—water mixtures. Furthermore, the as-prepared coated mesh can separate oils from harsh conditions, such as strong acidic, alkaline, hyperhaline solutions and hot water. Besides, we demonstrated the methyl blue adsorption performance with the diatomite at room temperature, showing excellent adsorption capacity for water remediation.

Keywords: Superamphiphilic; Switchable wettability; Oil/water separation; Separation efficiency; Adsorption.

1. Introduction

With expanding industrial oily wastewater and frequent oil spill accidents, oil/water

E-mail address:jianli83@126.com (J. Li).

^{*}Corresponding author. Tel.: +86 931 7971533; fax: +86 931 7971989.

Download English Version:

https://daneshyari.com/en/article/4990188

Download Persian Version:

https://daneshyari.com/article/4990188

<u>Daneshyari.com</u>