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The Wave Based Method (WBM) is an alternative numerical prediction method for both interior and exterior
steady-state dynamic problems, which is based on an indirect Trefftz approach. It applies wave functions,
which are exact solutions of the governing differential equation, to describe the dynamic field variables. The
smaller system of equations and the absence of pollution errors make the WBM very suitable for the
treatment of Helmholtz problems in the mid-frequency range, where element-based methods are no longer
feasible due to the associated computational costs. A sufficient condition for convergence of the method is
the convexity of the considered problem domain. As a result, only problems of moderate geometrical
complexity can be considered and some geometrical features cannot be handled at all. In this paper, these
limitations are alleviated through the development of a general modelling framework based on existing
WBMmethodologies which allows for the efficient introduction of inclusion configurations in boundedWBM
models for problems governed by one or more Helmholtz equations. The feasibility and efficiency of the
method is illustrated by means of numerical verification studies in which the methodology is applied to two
types of dynamic problems. On the one hand, a single Helmholtz equation associated with the steady-state
dynamic behaviour of acoustic cavities is studied. On the other hand, the framework is applied to the
solution of the Navier system of partial differential equations that describe the elastodynamic response of
two-dimensional perforated solids.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the application of numerical simulation techniques
in design, analysis and optimisation of mechanical systems has
become an indispensable part of the industrial design process. Both
the Finite Element Method (FEM) and the Boundary ElementMethod
(BEM) are well established Computer Aided Engineering (CAE) tools
which are commonly used for the analysis of time-harmonic dynamic
problems.

The FEM [1] discretises the problem domain into a large but finite
number of small elements. Within these elements, the dynamic field
variables are described in terms of simple, polynomial shape
functions. However, since these shape functions are no exact solutions
of the governing differential equations, a fine discretisation is required
to suppress the associated pollution error [2] and to obtain reasonable
prediction accuracy at higher frequencies. Solving the resulting large
numerical models requires a prohibitively large amount of computa-
tional resources. As a result, the FEM is limited to low-frequency
applications [3].

In recent years, a vast amount of research has been done into the
development of possible extensions of the FEM in order to minimise
or even eliminate the numerical pollution effects and, as a result,
increase the practical application range of the method to higher
frequencies. This has lead to a wide range of techniques, which can be
classified into a number of categories based on their specific focus. A
first family of approaches attempts to optimise the FE modelling
process without fundamentally altering it. Among these, refinement
methods aim at reducing the approximation errors through adaptive
(local) reduction of the dimensions of the FE discretisation [2] or
through an elevation of the approximation order of the FEM basis
functions [4] or through a combination of both [5]. Alternatively, [6–9]
propose special numerical integration schemes which significantly
increase the accuracy of the FEM with respect to numerical pollution
errors. Advanced iterative solution strategies can also be employed to
solve the FE numerical models more efficiently [10,11]. The main
drawback of these solution algorithms is that they are less robust and
that the gain in computational efficiency is highly dependent on the
problem at hand and the combination of iterative solver and
preconditioner used to solve the numerical systems. Domain
decomposition techniques, like Component Mode Synthesis [12], its
automated iterative variation Automated Multi-Level Substructuring
[13,14] and the Finite Element Tearing and Interconnecting approach
[15,16], apply a divide and conquer strategy which is perfectly suited

Computer Methods in Applied Mechanics and Engineering 199 (2010) 1881–1905

⁎ Corresponding author. Tel.: +32 16 32 86 06; fax: +32 16 32 29 87.
E-mail address: Bert.VanGenechten@mech.kuleuven.be (B. Van Genechten).

0045-7825/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2010.01.013

Contents lists available at ScienceDirect

Computer Methods in Applied Mechanics and Engineering

j ourna l homepage: www.e lsev ie r.com/ locate /cma

mailto:Bert.VanGenechten@mech.kuleuven.be
http://dx.doi.org/10.1016/j.cma.2010.01.013
http://www.sciencedirect.com/science/journal/00457825


for parallel implementation. A final family of FEM extensions modifies
the underlying integral formulations. Examples of this approach are
the stabilised FE methods [17–19], the ultra-weak variational
formulation [20,21] and multi-scale methods like the discontinuous
enrichment [22–24] and discontinuous Galerkin techniques [25,26].
Although all these developments have been instrumental towards
alleviating the frequency limitations of the FEM, they share the
property that the solution strategies are based on a discretisation of
the problem domain which has to conform to the boundary geometry
of any inclusion present in the problem domain, like e.g. holes, voids,
particles or aggregates. Even though at presentmanymesh generation
algorithms are well established, the creation of high-quality FEM
discretisations of domains with an arbitrary number and distribution
of defects and inclusions remains a challenging and time-consuming
process. Moreover, the main motivation for the development of many
of these techniques is to permit relatively rough element sizes to be
used up to much higher frequencies at the cost of more complicated,
and computationally more expensive, element formulations. When
problems with complex multiple inclusion configurations are consid-
ered, the gain in computational efficiency of these methods is partly
negated by the need to use conforming meshes since in this case the
required element sizes are governed by the need to accurately capture
the problem geometry rather than by the frequency limitations of the
method.

In order to overcome such meshing problems, several special
techniques have been developed, which can be divided into two
groups. On the one hand there are the techniques which contain
special elements of which the problem boundary does not have to
coincide with element boundaries. Examples are the extended FEM
and the generalised FEM [27–29], in which the finite element
approximation fields in elements near the inhomogeneities are
enriched (in a partition of unity way) using fields with a strong
physical meaning related to the properties of the inhomogeneities
[30,31], or techniques which introduce problem-dependent specialist
elements in the vicinity of the the inhomogeneity [32–34] while
classical finite elements are used to model the remainder of the
problem domain. These elements typically use analytical solutions of
the governing equation to represent the local behaviour near the
inhomogeneity. These approaches have, to the author's knowledge,
only been applied successfully to static problems. Due to the mesh
resolution requirements resulting from the study of dynamic
problems at higher frequencies, the relatively large specialist
elements, which typically enclose an entire hole, particle, ..., will
couple more and more finite element degrees of freedom to each
other, resulting in a significant increase in the bandwidth of the FEM
system matrix and a drastic decrease in modelling efficiency. On the
other hand, there are techniques which offer elements with a great
geometrical flexibility, for example the NURBS-based isogeometric
analysis developed by Hughes et al. [35]. However, research on that
method has, in the current field of interest, mainly focussed on static
problems and free vibrations of structures [36]. A rigorous assessment
of the behaviour of this method for the forced response analysis of
mid-frequency problems containing multiple inhomogeneities has to
the author's knowledge not been performed at present.

In contrast to the previously described FEM and FEM-based
techniques, which discretise the entire problem domain into small
elements, the BEM [37] is based on a boundary integral formulation of
the problem, such that only the boundary of the considered domain
has to be discretised. Within the applied boundary elements, some
boundary variables are expressed in terms of simple, polynomial
shape functions. Enforcement of the boundary conditions results in a
small numerical model, as compared to FE models, which can be
solved for the nodal values at the discretised boundary. Once these
nodal values are known, the field variables inside the domain may be
reconstructed by application of the boundary integration formula-
tions in a post processing step. While the use of a boundary

discretisation eliminates the problems faced by domain discretisation
methods for problems with complex inclusion configurations, the
construction of the frequency-dependent, complex, densely populat-
ed BE matrices, which includes the integration of singular functions, is
very time consuming as compared to the fast assembly of frequency-
independent, real valued, sparse FE matrices. In this way, the smaller
model size does not necessarily result in an enhanced computational
efficiency, so that the practical use of the BEM is also restricted to low-
frequency applications [38]. Moreover, when the complexity of the
inclusion geometries increases, the number of boundary values grows,
resulting in a further lowering of the practical application range of the
method.

Apart from the FEMand BEM and all themethods derived from their
basic concepts, there is another family of methods, the so called Trefftz
methods [39], which distinguish themselves from the FEMs by their
choice of shape and weighting functions [40]. Instead of using
approximation functions, exact solutions of the governing differential
equations are used for the expansion of the field variables. One such
Trefftz based method is the Wave Based Method (WBM) [41]. It is a
novel numerical prediction method for the analysis of steady-state
interior and exterior Helmholtz problems. Since the functionswhich are
applied to expand the dynamic field variables are exact solutions of the
governing (system of) Helmholtz equation(s), no residual error is
involved with the governing partial differential equation inside the
problem domain. However, the functions may violate the boundary
conditions. Enforcing the residual boundary errors to zero in aweighted
residual scheme yields a small matrix equation. Due to the small model
size and the enhanced convergence characteristics of theWBM, it has a
superior numerical performance as compared to classical domain
discretisation methods. As a result, problems at higher frequencies can
be addressed. In the past, theWBMhas been successfully applied for the
analysis of interior and exterior (vibro-) acoustic problems [42–45] and
for the structural dynamic analysis of flat plates [46,47].

One of the important disadvantages of the WBM is the require-
ment of a division of the problem into convex subdomains to ensure
convergence. This requirement necessitates a complex domain
splitting for some problem geometries, while other geometries may
not be possible at all, e.g. circular holes. Recent work by the authors
[48,49] proposes a significantly enhanced multi-level version of the
WBM for the analysis of two-dimensional acoustic scattering analysis
of a configuration of well separated generally shaped obstacles in an
unbounded acoustic medium. In this publication, the basic principles
of this approach are further developed into a general modelling
framework for the efficient introduction of inclusion configurations in
bounded WBM models. Moreover, the applicability of the methodol-
ogy is extended to encompass any type of dynamic problem governed
by one or multiple coupled Helmholtz-type partial differential
equations which is illustrated by a numerical verification study of
the technique for both steady-state acoustic and elastodynamic
problems. The proposed methodology is based on a decomposition
of the original (bounded) problem into a single interior subproblem
and one or multiple exterior problems. The outer boundary of the
interior subproblem matches the outer boundary of the original
problem domain while disregarding the inclusions. Each of the
exterior problems describes the scattering behaviour of a single
inclusionwhich is embedded in an unbounded homogeneous domain.
By modelling each of the subproblems using existing WBMmodelling
methodologies and applying the superposition principle to the
resulting response fields, an efficient and flexible numerical strategy
for modelling mid-frequency dynamic multiple inclusion problems is
obtained. Concerning themodelling principle, the proposedmethod is
quite similar to the decomposition into two parts using the
superposition principle in order to determine the stress concentration
factor for an infinite plate with a hole under uniaxial tension, as
proposed by Chen in [50]. In that paper, these principles are however
only applied to the static analysis of an infinitely extended medium

1882 B. Van Genechten et al. / Computer Methods in Applied Mechanics and Engineering 199 (2010) 1881–1905



Download English Version:

https://daneshyari.com/en/article/499033

Download Persian Version:

https://daneshyari.com/article/499033

Daneshyari.com

https://daneshyari.com/en/article/499033
https://daneshyari.com/article/499033
https://daneshyari.com

