Accepted Manuscript

Experimental investigation of a novel magnetically variable conductance thermosyphon heat pipe

Mohammad Behshad Shafii, Hadi Ahmadi, Meysam Faegh

PII: S1359-4311(17)33051-X

DOI: http://dx.doi.org/10.1016/j.applthermaleng.2017.07.140

Reference: ATE 10808

To appear in: Applied Thermal Engineering

Received Date: 4 May 2017 Revised Date: 9 July 2017 Accepted Date: 18 July 2017

Please cite this article as: M. Behshad Shafii, H. Ahmadi, M. Faegh, Experimental investigation of a novel magnetically variable conductance thermosyphon heat pipe, *Applied Thermal Engineering* (2017), doi: http://dx.doi.org/10.1016/j.applthermaleng.2017.07.140

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Title:

"Experimental investigation of a novel magnetically variable conductance thermosyphon heat pipe"

Authors:

Mohammad Behshad Shafii (First author, Corresponding author)

Sharif University of Technology, Tehran, Iran.

Email: behshad@sharif.edu

Phone: +98 21 66165675

Fax: +98 21 66000021

Hadi Ahmadi (Second author)

Sharif Energy Research Institute (SERI), Tehran, Iran.

Meysam Faegh (Third author)

Sharif University of Technology, Tehran, Iran.

Abstract

In this study, a novel Magnetically Variable Conductance Thermosyphon Heat Pipe (MVCTHP) was investigated experimentally. The possibility of deactivating a portion of evaporator length and subsequently altering heat pipe resistance by positioning a steel ball inside the evaporator and moving it by an external magnet was studied. The effect of various ball positions in the evaporator and inclination angles on heat pipe performance was studied at 30, 60, 90 and 120 Watts. The results indicated that at a given heat input, moving the ball away from the beginning of the evaporator of heat pipe increases its thermal resistance. Furthermore, by increasing heat input, MVCTHP performance for various ball positions improved. The best MVCTHP performance among 30, 60 and 90° inclination angles was achieved at 90°.

Keywords: Variable conductance, Thermosyphon heat pipe, Thermal management

Download English Version:

https://daneshyari.com/en/article/4990409

Download Persian Version:

https://daneshyari.com/article/4990409

<u>Daneshyari.com</u>