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a b s t r a c t

In this paper we present a hyperelastic rod model that takes into account self-contact forces. The model is
based on Cosserat rod theory that incorporates shear, elongation, flexure and twist deformations. The
problem of avoiding self-penetration of parts of the rod is handled by the introduction of a contact dis-
tance function and the incorporation of associated contact forces. We present a penalty method for the
treatment of the multi-valued and non-differentiable contact law. We also describe an augmented
Lagrangian formulation of this problem. We then give the details of the finite-element discretization of
the elastic rod self-contact problem as well as some numerical examples.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the last three decades, the theory of elastic rods has wit-
nessed great development because of its various industrial and bio-
mechanical applications. Among the types of elastic rods used in
practical applications we mention beams in civil constructions,
cables in marine industries [1–3], pipelines in the oil industries,
and fragments of the DNA molecule in the modeling of live sci-
ences, see e.g. [4–8]. Several models of elastic rods were employed
for the study of the deformations and supercoiling of fragments of
the DNA molecules. The elastic rod models in the context of DNA
modeling has experienced an increasing sophistication and suc-
cessfully produced detailed information on the deformations of
the DNA molecules. Nevertheless, there are several problems that
remain to be studied for a good understanding of the supercoiling
process of DNA fragments. The field of open problems in this con-
text is still very vast.

The problem of self-contact in elastic rod has attracted, in at
least the last two decades, a continuous attention. Several

researchers addressed this challenging problem using different ap-
proaches. Coleman and Swigon [4] have used an analytical ap-
proach to obtain equilibrium configurations of uniform elastic
rods with self-contact points under terminal loads. Thompson
et al. [9] studied the mechanics of uniform ply in which two
strands coil around one another in the form of a helix. van der Heij-
den et al. [7] studied the self-contact problem in clamped rods
using numerical continuation. Goyal et al. [10] used a computa-
tional approach to study looping and supercoiling of DNA frag-
ments. Coyne [11] addressed the problem of loop formation and
elimination in twisted cables.

In the present work, we propose to study the modeling and
numerical aspects of the equilibrium configurations of an elastic
rod, subject to terminal loads and which might contains points
or regions of self-contact not known a priori. The dominant classi-
cal theories of elastic rods are local ones and do not account for the
global behavior of the configuration of the rod. In particular, the
equations resulting from these theories cannot foresee nor avoid
the self-penetration of different parts of the rod. We describe a
uni-dimensional model for the treatment of self-contact in elastic
rod that is based on the Cosserat theory. The particularity of the
model we propose is the introduction of a simplified contact dis-
tance that takes into account the geometric description of the
rod. We make the mathematical analysis of this contact problem
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by giving an existence theorem. We first note that the computation
of the contact distance is equivalent to an orthogonal projection
computation of a point on a curve. By minimizing the elastic en-
ergy under the constraint that the contact distance is non-positive
we avoid self-penetration of different parts of the rod. We present
numerical results using a four-node curved finite element and a
multiplicative method for updating rotations as described by Simo
and Vu-Quoc [12] and Ibrahimbegović [13]. This updating proce-
dure has the advantage of automatically taking care of the con-
straints of orthonormality of the directors.

The paper is organized as follows. In Section 2, we review the
kinematics, equilibrium equations and constitutive law of the the-
ory of elastic rods based on the Cosserat model. Section 3 is de-
voted to the mathematical formulation of an elastic rod theory
that accounts for large deformations as well as self-contact forces.
We define a contact distance and use it to give a variational formu-
lation of the problem of self-contact in elastic rods. In Section 4, we
present the finite-element formulation of the problem of elastic
rods with self-contact. Some numerical examples of planar and
3D configurations of elastic rods with self-contact are presented
in Section 5.

2. Cosserat theory of rods

2.1. Preliminaries

Let fO; e1; e2; e3g be a fixed frame, with origin O and right-
handed orthonormal basis fe1; e2; e3g, of the Euclidean space R3.
For any two vectors a; b 2 R3, the scalar and vector products are
denoted a � b and a� b, respectively. We denote by kak the Euclid-
ean norm of the vector a, i.e., kak ¼ ða � aÞ1=2. The tensor product
a� b of the vectors a and b is the second-order tensor defined
by ða� bÞc ¼ ðc � bÞa for all vectors c 2 R3. For a vector a, we de-
note by a� the skew-symmetric tensor such that ða�Þb ¼ a� b
for all vectors b 2 R3. We denote by axialðAÞ the axial vector asso-
ciated with a skew-symmetric tensor A, i.e., such that
ðaxialðAÞÞ� ¼ A. Throughout the article, the summation convention
for repeated Latin indices is employed with range 1–3.

2.2. Geometric description

We employ the director theory of rod based on the model intro-
duced almost hundred years ago by the Cosserat brothers [14],
used in the abstract framework proposed by Antman [15], and
exploited by Simo and Vu-Quoc [16]. We consider an elastic rod
R of length L and circular cross-sections of a uniform diameter
2e. The configuration of the rod is described by specifying, for each
s 2 ½0; L�, a position vector rðsÞ and a right-handed triad of ortho-
normal directors fd1ðsÞ;d2ðsÞ;d3ðsÞg, see Fig. 1. The curve
C � frðsÞ; s 2 ½0; L�g represents the line of centroids of the cross-
sections, in the deformed configuration of R. The triad
fd1ðsÞ;d2ðsÞ;d3ðsÞg gives the orientation of the material cross-sec-
tion at s of R. We take RðsÞ to denote the proper orthogonal tensor
RðsÞ ¼ diðsÞ � ei. Throughout, quantities that are associated with
the reference configuration are denoted with the same symbol as
those associated with the deformed configuration but with a
superposed hat, e.g., r̂ instead of r. We shall assume that s is an arc-
length parameter for the curve bC, i.e., the center line of the rod in
its reference configuration.

The space of all possible configurations of the rod is

C ¼ fðr;RÞ 2 H1ð½0; L�; R3 � SOð3ÞÞg; ð1Þ

where SOð3Þ is the Lie group of special orthogonal tensors in R3.
This configuration space is not linear but rather a differentiable
manifold. The tangent space Tðr;RÞC to C at (r,R) is

Tðr;RÞC ¼ fðp;q�RÞ where ðp;qÞ 2 H1ð½0; L�; R3 � R3Þg: ð2Þ

The space of kinematically and physically (impenetration) admissi-
ble configurations of the rods is a subset of C whose elements sat-
isfy prescribed boundary conditions and impenetration constraints
to be discussed later.

2.3. Kinematics and strains measures

The kinematics of the rod are encapsulated in the following two
equations:

r0ðsÞ ¼ vðsÞ; ð3aÞ
R0ðsÞ ¼ u�ðsÞRðsÞ; ð3bÞ

where here and throughout 0 denotes differentiation with respect to
s. The vector uðsÞ is the axial (also called Darboux) vector associated
with the skew-symmetric tensor R0ðsÞRTðsÞ.

Following Antman [15], we introduce the following strain
measures

vðsÞ ¼ RTðsÞr0ðsÞ ¼ RTðsÞvðsÞ; ð4aÞ
u�ðsÞ ¼ RTðsÞR0ðsÞ ¼ RTðsÞu�ðsÞRðsÞ: ð4bÞ

We note here that the components v i and ui of the vectors v and u
in the basis fdi; i ¼ 1;2;3g have the following mechanical interpre-
tation: u1 and u2 measure the flexure in the planes ðd2;d3Þ and
ðd3;d1Þ, respectively, and u3 is a measure of the twist of the rod;
v1 and v2 measure the shear deformations in the d1 and d2 direc-
tions, respectively, while v3 represents the elongation of the rod.
We say that the rod is unshearable if v i ¼ v � di ¼ 0; i ¼ 1;2; inex-
tensible if v3 ¼ v � d3 ¼ 1; and inextensible and unshearable if
v ¼ d3.

Under a superposed rigid-body motion, defined by a proper
orthogonal tensor Q and a translation vector c, the position vector
rðsÞ transforms according to

r�ðsÞ ¼ QrðsÞ þ c;

and the directors diðsÞ transform as

d�i ðsÞ ¼ QdiðsÞ:

It follows that the rotation tensor RðsÞ transforms to R�ðsÞ ¼ QRðsÞ,
and hence it is straightforward to check that the strain measures (4)
are unaffected by the superposed rigid-body motion.

Because v � ei ¼ RTv � ei ¼ v � Rei ¼ v � di, the components of the
vector v with respect to the fixed frame feig coincide with the
components of the vector v with respect to the moving frame
fdig. Similarly, the components in the fixed frame feig of the vector

Fig. 1. Geometric descriptions of the reference (left) and current (right) configu-
rations of a Cosserat elastic rod.
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