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a b s t r a c t

We begin the mathematical study of the k-method utilizing the theory of Kolmogorov n-widths. The k-
method is a finite element technique where spline basis functions of higher-order continuity are
employed. It is a fundamental feature of the new field of isogeometric analysis. In previous works, it
has been shown that using the k-method has many advantages over the classical finite element method
in application areas such as structural dynamics, wave propagation, and turbulence.

The Kolmogorov n-width and sup–inf were introduced as tools to assess the effectiveness of approxi-
mating functions. In this paper, we investigate the approximation properties of the k-method with these
tools. Following a review of theoretical results, we conduct a numerical study in which we compute the
n-width and sup–inf for a number of one-dimensional cases. This study sheds further light on the approx-
imation properties of the k-method. We finish this paper with a comparison study of the k-method and
the classical finite element method and an analysis of the robustness of polynomial approximation.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we present a theoretical and computational
framework that allows one to examine approximation properties
of a prescribed discretization. The framework presented in this pa-
per is based on the theory of Kolmogorov n-widths. This theory de-
fines and gives a characterization of optimal n-dimensional spaces
for approximating function classes and their associated errors. n-
Widths are a well-explored subject in approximation theory, but
they are not as familiar to the finite element and computational
mechanics communities.

A practically useful concept that emerges from the theory of n-
widths is the sup–inf. Sup–infs quantify the error induced by a par-
ticular discretization in approximating a given class of functions. In
the context of Hilbert spaces, sup–infs can be directly computed by
way of the solution of a variational eigenproblem. As error is ex-
actly quantified, sup–infs can distinguish between two methods
of the same approximation order. Although such distinctions are
rarely made in classical approximation theory of finite elements,
we feel that such comparisons are necessary, primarily due to
the advent of new computational technologies. For example,
C0- and C1-continuous quadratic finite elements deliver the same
asymptotic convergence rate, but the size of the approximation er-
rors for the two classes of functions will be different. By comparing

the sup–inf to the n-width, we are able to assess the performance
of a given approximation space with respect to the optimal
discretization.

Recently Babuska et al. [4] made use of n-widths and sup–infs
to assess approximation properties of functions employed in gen-
eralized finite element methods. In this paper, we apply this frame-
work to the study of one-dimensional spline spaces of variable
order and continuity. Particular instances of these spaces include
classical C0-continuous finite elements as well as global polynomi-
als. The emphasis of our study is spline functions of maximal con-
tinuity. Such functions are the basis of the k-version of the
isogeometric finite element method. The concept of isogeometric
analysis was first introduced in [21]. The developments of [21]
aimed at unifying geometrical modeling and analysis for engineer-
ing applications. Although the development of isogeometric analy-
sis was driven by the need of a tighter link between computer-
aided design and computer-aided analysis, using spline functions
in analysis has proven to be beneficial from the standpoint of solu-
tion accuracy. Recent results in structural vibrations [13,14], wave
propagation [22], and turbulent flow [1,8] indicate that on a per
degree-of-freedom basis, discretizations of higher-continuity are
superior to their C0-continuous counterparts.

In Section 2, we give an overview of spline functions, their con-
struction, and their properties and define four discrete function
spaces used for the analysis in this paper. In Section 3, we outline
particular function classes of interest that arise in the study of par-
tial differential equations that we wish to approximate with spline
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functions. These classes of interest include standard Sobolev
spaces, Sobolev spaces with periodic boundary conditions, and Ja-
cobi-weighted Sobolev spaces. In Section 4, we introduce terminol-
ogy and concepts and state classical results of the theory of n-
widths and sup–infs. In this section, we also present known theo-
retical results on the optimality of splines for function classes of
interest. In Section 5, we outline a computational framework for
the evaluation of n-widths and sup–infs and apply this framework
to a number of one-dimensional cases. In Section 6, we draw con-
clusions based on our studies.

2. Splines

This section gives a very brief overview of univariate B-splines
and periodic splines. B-splines were first introduced by Schoenberg
in 1946 [28] in the attempt of developing piecewise polynomials
with prescribed smoothness properties. In his 1972 paper, de Boor
[15] introduced a simple and stable recursion formula for evaluat-
ing them, and since then, B-splines have been a standard in the
numerical analysis and computer-aided geometric design commu-
nities. For an overview of splines, their properties, and robust algo-
rithms for evaluating their values and derivatives, see de Boor [16]
and Schumaker [29]. For an introductory text on non-uniform ra-
tional B-splines (NURBS), see Rogers [27], while more detailed
treatments are given in the books of Piegl and Tiller [25] and Cohen
et al. [12]. For the application of splines to finite element analysis,
see Höllig [20] and Hughes et al. [21].

A B-spline basis is comprised of piecewise polynomials joined
with prescribed continuity. In order to define a B-spline basis of
polynomial order p in one dimension one needs the notion of a
knot vector. A knot vector in one dimension is a set of coordinates
in the parametric space, written as N ¼ fn1; n2; . . . ; nnþpþ1g, where i
is the knot index, i ¼ 1;2; . . . ;nþ pþ 1, ni 2 R is a knot,
n1 6 n2 6 � � � 6 nnþpþ1, and n is the total number of basis functions.

Given N and p, B-spline basis functions are constructed recur-
sively starting with piecewise constants (p ¼ 0):

Bi;0ðnÞ ¼
1 if ni 6 n < niþ1;

0 otherwise:

�
ð1Þ

For p ¼ 1;2;3; . . . they are defined by

Bi;pðnÞ ¼
n� ni

niþp � ni
Bi;p�1ðnÞ þ

niþpþ1 � n

niþpþ1 � niþ1
Biþ1;p�1ðnÞ: ð2Þ

When niþp � ni ¼ 0, n�ni
niþp�ni

is taken to be zero, and similarly, when

niþpþ1 � niþ1 ¼ 0, niþpþ1�n

niþpþ1�niþ1
is taken to be zero.

We define

Sðn;p;NÞ ¼ span B1;pðnÞ;B2;pðnÞ; . . . ;Bn;p
� �

ð3Þ

to be a B-spline space of dimension n with degree p and built using
knot vector N. B-spline basis functions form a partition of unity,
each one is compactly supported on the interval ½ni; niþpþ1�, and they
are point-wise non-negative. These properties are important and
make these functions attractive for use in analysis.

The first and last knots are called end knots, and the other knots
are called interior knots. Note that knots may be repeated. A knot
vector is said to be open if its end knots have multiplicity pþ 1. Ba-
sis functions formed from an open knot vector are interpolatory at
end knots of the parametric interval but they are not, in general,
interpolatory at interior knots. Basis functions of order p have
p� 1 continuous derivatives at non-repeated knots. If a knot has
multiplicity k, then the number of continuous derivatives de-
creases by k� 1. When the multiplicity of a knot is exactly p, the
basis function is interpolatory and only C0-continuous at that knot.

Periodic splines are constructed from B-splines subject to peri-
odic boundary conditions. If one desires a periodic spline space

that is Cs�1 at the end knots, one must directly enforce this con-
straint onto the associated B-spline space by restricting the first
s� 1 derivatives at the end knots to be equal.

The above constructions (1,2) encompass a large class of func-
tions. All the finite-dimensional spaces considered in this paper
may be expressed using particular instantiations of the knot vector
N. In particular, we define the following discrete spline spaces:

� Kðn; k; a; bÞ is the B-spline space of dimension n and degree k
corresponding to an open knot vector N with end knots located
at a and b (with b > a) and with equispaced and non-repeated
interior knots. Because the interior knots are distinct, the func-
tions in this space attain maximal continuity at interior knots.
That is, Kðn; k; a; bÞ � Ck�1ða; bÞ.

� Kperðn; k; a; bÞ is the periodic spline space of dimension n and
degree k corresponding to the open knot vector N with end knots
located at a and b and with equispaced and non-repeated interior
knots, subject to periodic boundary conditions of maximal con-
tinuity. Namely, if u 2 Kperðn; k; a; bÞ, then

DðiÞuðaÞ ¼ DðiÞuðbÞ; 8i ¼ 1;2; . . . ; k� 1: ð4Þ

This space is known as the space of uniform periodic splines.
Maximal order of continuity at all knots is attained in this
case.
� Pðn; p; a; bÞ is the B-spline space of dimension n and degree p cor-

responding to the open knot vector N with end knots located at a
and b, b > a, and with equispaced interior knots, each of which is
repeated p� 1 times. This is a space of standard finite element
functions of degree p that are C0-continuous at knots.

� Pðn; a; bÞ is the B-spline space of dimension n and degree n� 1
corresponding to the open knot vector N with end knots located
at a and b, b > a, and with no interior knots. This is a space of
global polynomials of degree n� 1.

In this paper, we define the k-version of the isogeometric finite
element method or, in short, the k-method as the analysis method
exploiting full continuity of the basis functions across distinct
knots (and hence results from knot vectors with non-repeated
interior knots). Alternatively, we define the classical finite element
method as the analysis method where only C0-continuity is en-
forced across interior knots. With these definitions, we see that
the spaces Kðn; k; a; bÞ and Kperðn; k; a; bÞ correspond to the k-meth-
od while the space Pðn; p; a; bÞ corresponds to the classical finite
element method of degree p. The space Pðn; a; bÞ corresponds to
the spectral method or the p-version of the finite element method
and is a special case of both the classical finite element and k-
methods, the case where no interior knots exist. Examples of these
spaces are illustrated in Fig. 1.

3. Function spaces

In this section, we introduce a number of function spaces which
arise in the study of elliptic partial differential equations. Solutions
to such equations often live in these function spaces, depending of
course on the regularity of the underlying problem and associated
boundary conditions.

3.1. Sobolev spaces

Let X � R be an open domain. For an integer m P 0, we use the
notation

HmðXÞ ¼ u 2 L2ðXÞ : Dau 2 L2ðXÞ for all a ¼ 0; . . . ;m
n o

: ð5Þ

The Sobolev space HmðXÞ is a Hilbert space with inner product
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