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a b s t r a c t

The work presented here constitutes an extension to the finite-strain regime of a discontinuous Galerkin
based, strain gradient plasticity formulation presented in Djoko et al. [J.K. Djoko, F. Ebobisse, A.T. McBride,
B.D. Reddy, A discontinuous Galerkin formulation for classical and gradient plasticity – Part 1: formula-
tion and analysis, Comput. Methods Appl. Mech. Engrg. 196 (2007) 3881–3897; J.K. Djoko, F. Ebobisse,
A.T. McBride, B.D. Reddy, A discontinuous Galerkin formulation for classical and gradient plasticity – Part
2: algorithms and numerical analysis, Comput. Methods Appl. Mech. Engrg. 197 (2007) 1–21]. The focus
here is on algorithmic and computational aspects of the formulation at finite strains. The adoption of a
logarithmic hyperelastic–plastic formulation preserves the essential features of the infinitesimal formu-
lation. This key ingredient allows the predictor–corrector solution algorithms developed for the infinites-
imal gradient formulation to be extended readily to the finite-strain regime. The use of low-order
elements is essential to contain the computational expense of the formulation but these elements are
prone to locking. The method of enhanced assumed strains for geometrically nonlinear problems is uti-
lised to circumvent this limitation. The form of the consistent tangent modulus is derived for the case of
gradient plasticity. Two numerical examples are presented to illustrate aspects of the approximation
scheme and the algorithm, as well as features of the model of gradient plasticity.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The inability of the well-developed classical theories of plastic-
ity to capture scale-dependent behaviour is one of the primary
motivations for the development of a range of strain gradient plas-
ticity models that attempt to represent the underlying mesoscale
phenomena within a continuum framework, see, for example, [1].
A further motivation concerns the inability of the classical models
to describe softening media. In the early works of Dillon and Krat-
ochvil [2], Aifantis [3,4] and Coleman and Hodgdon [5], the von
Mises yield criterion is augmented by a term involving the Lapla-
cian of the equivalent plastic strain, and possibly further higher-or-
der terms. These theories incorporate, in a natural way, a physical
length scale, and thereby allow phenomena such as shear banding
to be represented meaningfully. The relation of these theories of
gradient plasticity to the underlying interpretation of plastic defor-
mation arising due to the flow of dislocations in the crystal lattice
structure was established by Aifantis [3,4].

The nonstandard higher-order contributions arising in gradient
plasticity formulations render the conventional framework of clas-
sical finite elements inappropriate. Various approaches have hith-
erto been used in the numerical treatment of problems in gradient
plasticity based upon a similar model to the one considered here.
De Borst and Mülhaus [6] derived a weak form of the gradient plas-
ticity formulation proposed by Mülhaus and Aifantis [7] as well as
the resulting finite element framework. The use of C1 finite ele-
ment formulations for the interpolation of the hardening parame-
ter has been documented in [6,8–10]. Related work, using a
conforming approximation, is that of Liebe and Steinmann [11].
De Borst et al. [12] extended their earlier work to include gradient
damage within a gradient plasticity formulation. Other contribu-
tions concerned with gradient damage include the investigation
by Wells et al. [13] while Garikipati [14] has explored a variational
multiscale approach to a model of gradient plasticity proposed by
Fleck and Hutchinson [1].

The work presented here constitutes an extension to the finite-
strain regime of a discontinuous Galerkin based, strain gradient
plasticity formulation documented for the infinitesimal theory in
[15,16]. Various other researchers have also considered the exten-
sion of the gradient plasticity model in [7] to the finite-strain re-
gime (see, for example, [17–20]). An evaluation of the ability of
several higher-order plasticity theories to predict size effects and
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localisation was presented by Engelen et al. [21]. Other key contri-
butions to the numerical simulation of problems of gradient plas-
ticity include those presented in [22–27,20,28], amongst others.

As detailed in [15,16], the discontinuous Galerkin finite element
method allows the higher-order contributions arising in the gradi-
ent formulation to be treated in an elegant and effective manner. In
discontinuous Galerkin methods, interelement continuity of the
approximation field is relaxed in a framework in which the discrete
problem remains consistent.

Discontinuous Galerkin methods were developed in the 1970s
and 1980s [29,30], but it is only in recent years that they have been
exploited in a wide range of problems. The collection [31] provides
an excellent overview of the key approaches for elliptic and hyper-
bolic problems. Within the context of linear elasticity there have
been important contributions by Rivière and Wheeler [32] and
Wihler [33], the latter considering the case of nonconvex domains
and vanishing compressibility. Ten Eyck and Lew [34] demon-
strated the effectiveness of the discontinuous Galerkin formulation
in circumventing locking-related problems arising due to vanish-
ing compressibility within the context of nonlinear elasticity. A
key contribution of their work was to show that the discontinuous
Galerkin formulation produced results of similar accuracy to those
obtained using a conforming approximation with a comparable,
and often lower, computational cost. The effective treatment of
the incompressibility constraint is of significant importance in
many models of plasticity in which plastic deformation is assumed
incompressible.

A discontinuous Galerkin method has recently been developed
for strain gradient dependent damage models [13,35], while the
work by Engel et al. [36] treats continuous/discontinuous Galerkin
methods for fourth-order problems by reducing the classical
requirement of C1 continuity of the unknown variable to one of
continuity. Discontinuous Galerkin in time approximations for
classical plasticity have been investigated by Alberty and Carsten-
sen [37]. More recently, the discontinuous Galerkin method has
been applied to problems in nonlinear elasticity by ten Eyck and
Lew [34] and Noels and Radovitzky [38].

The extension of our previous work to the finite-strain regime is
facilitated by the adoption of a logarithmic hyperelastic–plastic
model that preserves the essential ingredients of the return map-
ping algorithms of the infinitesimal theory. The model was devel-
oped for classical plasticity by Simo [39]. The extension of the
classical small-strain plasticity theory to finite strains using loga-
rithmic strain measures has a considerable history [40–47]. The
simplicity of this model of plasticity has been exploited by Geers
[48] as the basis for a nonlocal implicit gradient plasticity formula-
tion at finite strains.

The assumption of incompressible plastic deformation in the
von Mises yield criterion renders a finite element solution using
low-order elements susceptible to volumetric locking. Low-order
elements are advantageous however as they reduce the computa-
tional expense of the formulation and are more robust than high-
order elements for large-deformation problems. The method of
enhanced assumed strains for geometrically nonlinear problems,
originally developed by Simo and Armero [49] and extended in
subsequent works [50–52], is utilised to provide a locking-free re-
sponse for low-order elements.

This work focuses on algorithmic and computational aspects of
the model of gradient plasticity considered at finite strains. In
Section 2 we review the relations governing an elastoplastic body.
The method of enhanced assumed strains is outlined. Relevant
terminology pertaining to the discontinuous Galerkin finite ele-
ment method is then presented in Section 3. This provides the
background for the discontinuous Galerkin formulation of the
nonlocal consistency condition arising in the gradient problem.
The numerical solution of the gradient plasticity problem is rea-

lised by means of a predictor–corrector algorithm, as discussed
in Section 4. In addition to deriving the algorithmic consistent
tangent modulus, full details of the implementation of the algo-
rithm are given. Two example problems are presented in Section
5 to illustrate the performance and key features of the algorithm.
The work concludes with a summary and a review of possible
extensions.

2. The governing equations for the problem

We denote by X 2 R2 the reference placement of a continuum
with material points denoted X as depicted in Fig. 1. The time do-
main under consideration is the interval ½0; T�. The boundary of X is
denoted by @X with outward normal N. Dirichlet and Neumann
boundary conditions for the displacement u and the traction T
are prescribed on Cu and CT , respectively, in addition
Cu \ CT ¼£ and Cu [ CT ¼ @X. The nominal prescribed traction
on CT is denoted by T ¼ PN, where P is the first Piola–Kirchhoff
stress tensor. The current placement of the continuum body result-
ing from a deformation u is denoted by S ¼ uðXÞ. The displace-
ment of a material point relative to the reference configuration is
denoted by uðX; tÞ ¼ uðX; tÞ � X.

Let T0
h ¼ fK

0g be a shape-regular subdivision of the reference
domain X where K0 are, here, conforming quadrilateral subdo-
mains (finite elements). We denote by h0

K ¼ diam½K0� a measure
of the element size and by h ¼maxfh0

k ;K
0 2T0

hg a measure of
the maximum element size in the discretisation.

Following standard finite element procedure we approximate
the displacement field u with a trial function uh 2 Vh, where Vh

is a finite-dimensional subspace of V ¼ H1ðXÞ2. Over each element
we associate a finite-dimensional function space X with basis func-
tions NA

u ðA ¼ 1; . . . ; ne
nodeÞ defined on the reference element

K̂ 2 � ¼ ½�1;�1� � ½1;1�. The variable n e
node denotes the number

of nodes per element.
The interpolation of the reference domain and the displacement

field over a typical element follow as per conventional Galerkin fi-
nite element procedure based upon the isoparametric concept;
that is,

X � Xh ¼
Xne

node

A¼1

NA
uðnÞXA and uh ¼

Xne
node

A¼1

NA
uðnÞuA;

where XA and uA are the reference coordinates and the displace-
ment of node A, respectively, and n ¼ ðn;gÞ 2 � are coordinates in
the reference element.

The focus of the work presented here is on a formulation of gra-
dient plasticity that utilises the discontinuous Galerkin approach.
For the sake of convenience, the displacement field is approxi-
mated using conforming bilinear elements. The analysis of the
small-strain problem of gradient plasticity using the discontinuous
Galerkin method for the approximation of both the displacement
and plastic strain fields has been presented by the authors in
[15]. Discontinuous Galerkin approximations for nonlinear elastic-
ity have also been the subject of recent investigations by ten Eyck
and Lew [34] and Noels and Radovitzky [38]. Bilinear elements
were chosen here to decrease the computational expense of the
formulation and for their superior robustness over higher-order
elements for large-deformation processes.

The deformation gradient is interpolated across an element
from the current nodal positions xA :¼ XA þ uA as follows:

GRADX ½uh� ¼
Xne

node

A¼1

xAðtÞ � GRADX ½NA
u�; ð1Þ

where GRADX ½ð�Þ� :¼ @ð�Þ=@X is the gradient operator with respect to
the reference configuration. The time-independent derivatives of
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