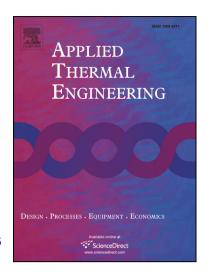
Accepted Manuscript

Research Paper

Solar desalination using solar still enhanced by external solar collector and PCM

Mohammad Al-harahsheh, Mousa Abu-Arabi, Hasan Mousa, Zobaidah Alzghoul


PII: S1359-4311(17)31000-1

DOI: http://dx.doi.org/10.1016/j.applthermaleng.2017.09.073

Reference: ATE 11130

To appear in: Applied Thermal Engineering

Received Date: 14 February 2017 Revised Date: 27 July 2017 Accepted Date: 7 September 2017

Please cite this article as: M. Al-harahsheh, M. Abu-Arabi, H. Mousa, Z. Alzghoul, Solar desalination using solar still enhanced by external solar collector and PCM, *Applied Thermal Engineering* (2017), doi: http://dx.doi.org/10.1016/j.applthermaleng.2017.09.073

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Solar desalination using solar still enhanced by external solar collector and PCM

Mohammad Al-harahsheh^{a,*}, Mousa Abu-Arabi^{a,b}, , Hasan Mousa^{a,c}, Zobaidah Alzghoul^a

^a Department of Chemical Engineering, Jordan University of Science and Technology Irbid 22110, Jordan.

^b Department of Chemical Engineering, Faculty of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

^c Department of Petroleum and Chemical Engineering, Sultan Qaboos University, P. O. Box 33, Muscat 123, Oman

* msalharahsheh@just.edu.jo

Abstract

In this work, an experimental study on water desalination using a solar still having phase change material (PCM) and connected to a solar collector was carried out. The PCM is used to store solar thermal energy collected by the system at daytime as latent heat, to provide heat during night time thus continuous operation. Water in the basin and the PCM were heated by direct solar radiation and by hot water flowing through a coil heat exchanger, fixed in the basin, heated by a solar collector. The produced water vapor from the basin condensed on the inner side of the water cooled double-glass cover. The condensate was withdrawn as fresh water. The effect of hot water circulation flow rate, cooling water flow rate, and basin water level on the amount of fresh water produced were studied. The production rate of desalinated water was proportional to the increase in ambient temperature and hot water circulation flow rate. There also is an optimum value of cooling water flowrate (about 10 ml/s) at which the unit productivity was the highest. Additionally, as the water level in the basin increased the productivity decreased. The unit was capable of producing 4300 ml/day.m², of which about 40% was produced after sunset. The economic evaluation reveal that such units are feasible mainly in remote areas.

Keywords: Solar still, phase change material, solar collector, productivity

Download English Version:

https://daneshyari.com/en/article/4990864

Download Persian Version:

https://daneshyari.com/article/4990864

<u>Daneshyari.com</u>