
Reduced Chaos decomposition with random coefficients of vector-valued
random variables and random fields

Christian Soize b, Roger G. Ghanem a,*

a Department of Aerospace and Mechanics, 210 KAP Hall, University of Southern California, Los Angeles, CA 90089, United States
b Université Paris-Est, Laboratoire de Modélisation et Simulation Multi-Échelle, MSME FRE3160 CNRS, 5 bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée, Cedex 2, France

a r t i c l e i n f o

Article history:
Received 18 June 2008
Received in revised form 14 October 2008
Accepted 31 December 2008
Available online 23 January 2009

Keywords:
Uncertainty quantification
Polynomial Chaos
Karhunen–Loeve
Stochastic model reduction

a b s t r a c t

We develop a stochastic functional representation that is adapted to problems involving various forms of
epistemic uncertainties including modeling error and data paucity. The new representation builds on the
polynomial Chaos decomposition and eventually yields a Karhunen–Loeve expansion with random mul-
tiplicative coefficients. In this expansion, one set of uncertainty is captured in the usual manner, as uncor-
related scalar random variables. Another component of the uncertainty, statistically independent from
the first, is captured by constructing the, usually deterministic, functions in the KL expansion as random
functions. We think of the first set of uncertainties as associated with a coarse scale model, and of the
second set as associated with subscale fluctuations not captured in the coarse scale description.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

A number of challenges remain on the path to achieving the im-
pact of stochastic analysis for the treatment of complex systems
whose behavior is subject to uncertainties. These challenges can
be broadly classified into three groups: Modeling, characterization,
and propagation. In the modeling area, two further classifications
can be identified. The first classification delineates between para-
metric and non-parametric interpretations of uncertainty. In the
first case, uncertainty is attributed to stochastic fluctuations in
the parameters of a physical model [11,21]. These fluctuations
are typically interpreted as representing subscale fluctuations not
fully resolved on the scale at which the governing physics is as-
sumed to govern. In the second case, uncertainty is attributed to
fluctuations in the form of the governing equations, leading to sto-
chastic operator perturbations [19,20,5]. The second classification
depends on the representative properties of the solution. Specifi-
cally, computed solutions can be representative of target solutions
either in a distributional sense, a functional (L2) sense, or an al-
most-sure sense, with distinct sets of mathematical tools applica-
ble depending on the case. More specifically, approximation
accuracy, model reduction, and the ingredients of a well-posed
problem should all be defined in the context of what is meant by
equality (distributional, in-the-norm, or almost-sure) [1]. We note
that stochastic L2 representations provide a characterization of the

solution of a given problem as a deterministic functional form in
terms of the stochastic parameters. This form for the solution is
significant if sensitivity information and L2-style error analysis
are subsequently required, but otherwise seems to provide too
much information. Likewise, a distributional equivalence between
the computed solution and the exact solution is suitable if the de-
tails of the stochastic degrees of freedom (i.e. stochastic dimen-
sions) are not relevant to the final analysis. The most significant
challenge associated with characterizing uncertainty consists in
faithfully capturing the weight of available evidence, with error
analysis capabilities to determine the value of additional evidence.
Methods for characterizing uncertainty are typically adapted to
specific modeling approaches and rely on methods of statistical
analysis including statistical estimation and statistical inference.
Procedures based on maximum likelihood [12,6,9], Bayesian infer-
ence [10], and maximum entropy [4,19] have been put in place to
characterize mathematical models based on polynomial Chaos
decompositions and random matrix theory. The last challenge
identified above relates to propagating uncertainty from data to
predictions. This challenge has specific attributes depending on
the interpretation of stochastic equality and on the specific sto-
chastic model used. In all cases, however, it can be expected that
the computational cost associated with this propagation step will
grow with the complexity of the underlying stochastic data
(requiring more stochastic degrees of freedom for a suitable char-
acterization) and with the level of stochastic scatter in this data,
typically resulting in a greater scatter in the predicted quantities
of interest and a stronger nonlinear dependence of the predictions
on the data.
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Significant progress has been achieved in recent years in the
analysis of stochastic partial differential equations with random
coefficients. In particular, theory and algorithms underlying poly-
nomial Chaos and other functional approximation and projection
methods have been set on firmer ground, providing a path forward
towards a general purpose formulation of stochastic computational
analysis [8,23,14,13,3,15,7,2,22,16]. Also, procedures for character-
ization and calibration of stochastic representations have been
developed [12,6,10,9,4] that are well-adapted to functional
approximation methods and their significance to model validation
has been demonstrated [9]. Most of these developments have been
with a view to either calibrating probabilistic models or accelerat-
ing the convergence of uncertainty propagation procedures,
including methodologies for a-priori and a-posteriori error estima-
tion. Modeling efforts that address the curse of dimensionality for
complex uncertainties and that provide a framework for integrat-
ing epistemic uncertainty into the same unified framework as
other sources of uncertainty have only recently begun to emerge
While a number of efforts have introduced polynomial Chaos
expansions where both the basis functions and their associated
coordinates are random [17,10,9]. In these approaches, the mathe-
matical analysis of these representations is still at a very funda-
mental level [18] that lags behind the nuances and sophistication
of current practical needs. The present paper addresses this issue
from a perspective that highlights its significance to problems of
conceptual and mathematical modeling, calibration of probabilistic
models, and computational efficiency. Specifically, we demonstrate
how subset of the stochastic degrees of freedom can be rolled into
the coefficients of a polynomial Chaos expansion, thus permitting
the segregation of the uncertainties for subsequent processing.
For example, the uncertainties that are retained for functional
approximation can be treated using stochastic Galerkin projec-
tions, while the uncertainties that have been rolled into the coeffi-
cients can be treated using distributional representation. This
hybrid treatment of uncertainties will adapt the computational ef-
fort and algorithms to the specific needs of the problem at hand.
The final byproduct of our analysis is a Karhunen–Loeve decompo-
sition where the, usually deterministic, coordinate functions are
now themselves stochastic, endowed with a probabilistic measure
that is independent of the measure associated with the standard
orthogonal Karhunen–Loeve random variables.

In a first part of the paper, we show how the reduced Chaos
decomposition with random coefficients of a Rn-valued second-or-
der random variable can be constructed and explore the mathe-
matical properties of such a representation. A second part deals
with the case of random fields. In the third part, we demonstrate
our construction on an example that highlights some of its salient
features.

2. Reduced Chaos decomposition with random coefficients of a
vector-valued second-order random variable

2.1. Chaos decomposition of a vector-valued second-order random
variable on a tensor product of two Hilbert spaces

In this subsection, we introduce the Chaos decomposition of a
Rn-valued second-order random variable with respect to the tensor
product of two Hilbert spaces. This is a particular case of the more
general setting analyzed in [21].

Let X ¼ ðX1; . . . ;XnÞ, Y ¼ ðY1; . . . ;YmÞ and Z ¼ ðZ1; . . . ; ZpÞ be
three second-order random variables, defined on a probability
space ðH;T; PÞ, with values in Rn, Rm and Rp, respectively. The
probability distributions on Rn and Rm of random variables X and
Y are assumed to be given and are denoted by PXðdxÞ and PY ðdyÞ,
in which dx ¼ dx1 � � � dxn and dy ¼ dy1 � � � dym are the Lebesgue

measures on Rn and Rm. It is assumed that random variables X
and Y are independent. Consequently, the joint probability distri-
bution on Rn � Rm of random variables X and Y is written as
PX;Y ðdx; dyÞ ¼ PXðdxÞ � PY ðdyÞ.

The random variable Z is assumed to be the transformation of X
and Y by a measurable nonlinear mapping
ðx; yÞ# f ðx; yÞ ¼ ðf1ðx; yÞ; . . . ; fpðx; yÞÞ from Rn � Rm into Rp, in
which x ¼ ðx1; . . . ; xnÞ and y ¼ ðy1; . . . ; ymÞ. We then have
Z ¼ f ðX;YÞ.

Since f is such that Z is a second-order random variable, we
have

E kf ðX;YÞk2
Rp

n o
¼
Z

Rn

Z
Rm
kf ðx; yÞk2

Rp PX;Y ðdx;dyÞ < þ1 ð1Þ

in which Ef�g denotes the mathematical expectation, and where
k � kRp denotes the Euclidean norm in Rp associated with the inner
product hz; z0iRp ¼ z1z01 þ � � � þ zpz0p. From Eq. (1), it can be deduced
that mapping f belongs to the space L2

PX;Y
ðRn � Rm;RpÞ of PX;Y -

square-integrable functions from vector space Rn � Rm into vector
space Rp.

Let HX ¼ L2
PX
ðRnÞ (resp. HY ¼ L2

PY
ðRmÞ) be the real Hilbert space

of PX-square-integrable functions (resp. PY -square-integrable func-
tions) from vector space Rn (resp. Rm) into R. The real Hilbert
spaces HX and HY are equipped with the following inner products:

hu;u0iHX
¼
Z

Rn
uðxÞu0ðxÞPXðdxÞ ¼ E uðXÞu0ðXÞf g; ð2Þ

hv ;v 0iHY
¼
Z

Rm
vðyÞv 0ðyÞPY ðdyÞ ¼ E vðYÞv 0ðYÞf g: ð3Þ

We introduce the multi-index a ¼ ða1; . . . ;anÞ 2 Nn and the multi-
index b ¼ ðb1; . . . ;bmÞ 2 Nm. Let us consider a Hilbertian basis of real
Hilbert space HX (resp. HY ) given by fua; a 2 Nng (resp.
fwb; b 2 Nmg). We thus have

hua;ua0 iHX
¼ EfuaðXÞua0 ðXÞg ¼ daa0 ; ð4Þ

hwb;wb0 iHY
¼ EfwbðYÞwb0 ðYÞg ¼ dbb0 : ð5Þ

Therefore, any function g 2 HX (resp. h 2 HY ) can be expanded as

gðxÞ ¼
X
a2Nn

gauaðxÞ; hðyÞ ¼
X
b2Nm

hbwbðyÞ ð6Þ

in which

ga ¼ hg;uaiHX
¼ EfgðXÞ uaðXÞg; hb ¼ hh;wbiHY

¼ EfhðYÞ wbðYÞg:
ð7Þ

Below, it is assumed that the Hilbertian bases ua and wb are polyno-
mial bases such that

u0ðXÞ ¼ 1; w0ðYÞ ¼ 1: ð8Þ

Consequently, we deduce that

EfuaðXÞg ¼ 0; 8a – 0 and EfwbðYÞg ¼ 0; 8b – 0: ð9Þ

It can then be proven [21] that the Rp-valued random variable
Z ¼ f ðX;YÞ has the following Chaos representation related to the
tensor product of HX with HY ,

Z ¼
X
a2Nn

X
b2Nm

zabuaðXÞwbðYÞ ð10Þ

in which the coefficients zab 2 Rp are given by

zab ¼ EfZuaðXÞwbðYÞg: ð11Þ

We then have the following properties concerning the second-order
moments of random variable Z,

C. Soize, R.G. Ghanem / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1926–1934 1927



Download English Version:

https://daneshyari.com/en/article/499087

Download Persian Version:

https://daneshyari.com/article/499087

Daneshyari.com

https://daneshyari.com/en/article/499087
https://daneshyari.com/article/499087
https://daneshyari.com

