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a b s t r a c t

In this paper, a family of state-of-the-art parallel domain decomposition methods that combine the
advantages of both direct and iterative solvers are investigated for the monolithic solution of the u–p for-
mulation of the porous media problem. Moreover, a new family of parallel domain decomposition meth-
ods, specifically tailored for the above problem formulation is presented which outperforms the current
state-of-the-art parallel domain decomposition solvers. The power of this family of solvers is demon-
strated in two large scale porous media problems.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

For single-phase media, the prediction of the ultimate failure
load of a soil mechanics problem is possible with a reasonable
computational effort and relatively standard mathematical formu-
lations. For porous media problems, which are usually dynamic, a
more involved formulation is required for limit load predictions.
This complication stems from the fact that the behavior of geoma-
terials, where the pores of the solid phase are filled with one or
more fluids, cannot be described by the laws governing single-
phase media. Multi-phase media is frequently encountered in geo-
technical problems such as uneven settlements of underlying soil
deposits, superstructure damage due to consolidation of the foun-
dations, dissipation of excess pore water pressure resulting from
foundation loading. Furthermore, multi-phase consideration is re-
quired in seismic or wave loading of soil–structure interaction
problems and draining systems in landfills and reservoirs.

Soils and geomaterials, in general, have an internal pore struc-
ture that partially consists of a solid phase, often called the solid
matrix, and a remaining part, called the void space which is filled
by a single or a number of fluid phases, like gas, water, oil, etc.
The solid phase and the fluid phase(s) have different motions;
due to these motions and the different material properties of the
solid and the fluid phase(s), the interaction between them is of cru-

cial importance, thus making the description of the mechanical
behavior of the porous media more complicated. Moreover, this so-
lid–fluid interaction is particularly strong in dynamic loading and
may lead to fatal strength reduction of the porous medium, like
the one that occurs during liquefaction of loose saturated granular
soils subjected to repeated cyclic loading or during the localized
failure in earth dams and wet embankments.

Significant progress has been made in the last three decades,
both from a theoretical as well as experimental point of view, as
far as understanding the behavior of the solid phase interacting
with one or more fluids inside a porous medium. This progress is
greatly based on the proposition of the effective stress [1] which
was widely accepted and has been successfully applied for study-
ing time-dependent problems of this kind. More recently, advances
in the application of Biot’s theory to the mechanical response of
porous media have been documented by various researchers
[4,5] while the three most important theories (Biot [2,3], classical
mixture and hybrid mixture theory [6–10]) were shown in [15]
to lead to a similar form of field equations.

The finite element method has been proven to be an extremely
powerful tool for the determination of both stresses and pore fluid
pressure(s) distribution in porous media. The first application of
the finite element method to solve Biot’s field equations for the
consolidation problem in the plane strain condition can be found
in [16]. Furthermore, a numerical analysis of anisotropic consolida-
tion of layered media is presented in [17], while in [18] Biot’s the-
ory is re-examined where a simplification, by ignoring the relative
acceleration of pore fluid(s) with respect to the soil skeleton is
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suggested. This approach was followed by many researchers and
constitutes the basic problem formulation in the present investiga-
tion. Recently, a number of works have been published in porous
media problems dealing with adaptive refinement techniques
[14], mortar finite elements discretization [13], a posteriori error
estimation [12] and stochastic multiscale methods [11] among
others.

There are various successful methods for the numerical solution
of finite element uncoupled problems. Domain decomposition
methods (DDM) constitute an important category of methods for
the solution of a variety of problems in computational mechanics.
Their performance, in both serial and parallel computer environ-
ments has been demonstrated in a number of papers over the last
decade. They are basically classified as primal and dual DDM. The
primal DDM (P-DDM) reach the solution by solving for the inter-
face displacements after elimination of the internal degrees of free-
dom (dof) of the subdomains, while dual DDM (D-DDM) proceed
with the computation of the Lagrange multipliers required to en-
force compatibility between subdomains after the elimination of
all the dof (internal and interface) of each subdomain. In the early
90s, an important D-DDM, the Finite Element Tearing and Inter-
connecting (FETI) method was introduced [31] and recently a fam-
ily of P-DDM, namely the P-FETI methods were proposed [32,33].
Since their introduction, FETI, P-FETI DDM and several variants
have gained importance and today are considered as highly effi-
cient DDM [39–43].

However, for porous media problems, the optimum solution
method is still to be found. Several methods have been investi-
gated [19–21,38] but a fully satisfactory answer has not yet been
found. The monolithic approach, where all field equations are
solved simultaneously, is regarded as the most suitable one
[22,23] for this type of coupled problems and will be adopted in
the present investigation. Solutions on parallel computing environ-
ments have also been investigated [24–26] by implementing meth-
ods primarily based on frontal and multi-frontal solution
techniques, which were found to be less attractive since the com-
putational overhead due to parallelization is significant [23].

Application of the aforementioned DDM for the solution of por-
ous media problems has not yet been investigated. Its straightfor-
ward implementation raises a series of issues with the most
important ones being the non-symmetric formulation of the prob-
lem and the handling of the rigid body modes. In this work, a fam-
ily of innovative parallel domain decomposition algorithms based
on the monolithic approach are implemented while addressing
both these issues. An elegant symmetrization procedure of the im-
plied dynamic equilibrium is proposed while primal and dual do-
main decomposition methods are implemented with special
artificial coarse problems needed to remove the zero energy
modes in the subdomains. Their performance will be demon-
strated with numerical results of large scale porous media
problems.

2. Porous media problem formulation

The basic equation that relates effective stresses, soil skeleton
stresses and pore pressure for a multi-phase medium (Fig. 1) can
be written as:

r00 ¼ rþ amT p ð1Þ

with

m ¼ 1 1 1 0 0 0½ �; ð2Þ

where r00 are the effective stresses, r are the soil skeleton stresses
and p is the pore pressure. The a coefficient takes values near unity
for clay and sand soils and can be as low as 0.5 for rocky soils.

If pw and pa represent the fluid and air pore pressure respec-
tively and vw and va represent the percentage of the pore pressure,
that is due to the existence of the fluid and the air in the pores,
respectively, then in case of partially saturated media, where the
air pressure is assumed to be negligible, the following equation
holds:

p ¼ vwpw þ vapa ¼ vwpw þ ð1� vwÞpa � vwpw ð3Þ

with vw + va = 1 and vw = vw(Sw), where Sw is the media saturation
degree.

Darcian flow w occurs when imposing a difference in hydro-
static pressure Dp between two material points, say A and B
(Fig. 2).

If R is the viscous drag forces, k is the permeability matrix, hav-
ing terms defined with dimensions of [length]3[time]/[mass] (and
assuming isotropic permeability, k = kI with k being the permeabil-
ity coefficient), then kR = w.

Considering the soil skeleton and the fluid embraced by the
usual control volume dV = dxdydz, the following equation describes
the momentum balance relation for the soil–fluid mixture:

ST
r� qð€u� bÞ ¼ 0 ð4Þ

with
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q = nSwqw + (1 � n)qs is the soil–fluid mixture density, qs is the soil
density, qw is the fluid density, n is the porosity, u is the vector of
the soil skeleton displacements, b is the vector of body force per
unit mass and the dot refers to time differentiation. Convective
terms regarding fluid flow have been omitted as they are generally
very small and can be neglected [5].

Fig. 1. A 2D porous material sample.

Fig. 2. Darcy flow through a medium under the action of a pressure gradient.
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