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a b s t r a c t

Dynamic contact between a deformable body with either large or small deformation and a rigid obstacle
can be modeled with Signorini contact condition stated in terms of the normal component of the dis-
placement – as long as the relative positions are clearly defined. The geometrical relation, however, is
unpredictable when large motion or large deformation and complex surface geometry are involved.
The use of normal velocity is more suitable. A variational inequality is proposed for the dynamic contact
problem. The penalty method is introduced and implemented in explicit finite element software. Numer-
ical examples are presented to demonstrate the robustness of the algorithm.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

During large deformation such as in a vehicle crash, different
parts of the structure can come in contact with each other. Even
different parts of the same component can be in contact. Thus, in
numerical simulation, the contact algorithm is essential in pre-
venting structural penetration so that the analysis can represent
the true physical event. Contact problem has been one of the most
actively researched fields in applied mechanics, numerical meth-
ods, and applied mathematics. It is also a very active field related
to the development of software and computer architecture. Major
developments in contact mechanics have been illustrated in sev-
eral well-written books concentrating on contact problems with
references being quoted extensively. For example, see [4,7,12,21]
for mathematical theories; [10,25,28] for the mechanics aspects
and numerical approaches. In addition, the survey articles are the
invaluable resources, cf. [2,24,29].

Consider a material body occupying domain X in a three dimen-
sional space in contact with a fixed rigid obstacle. This is a type of
Signorini’s problems, depicted in Fig. 1. The contact is by its portion
of boundary Cc. Denote by S(x) = 0 for the surface of obstacle and
assume that S is a smooth function. Let xc 2 Cc be in contact with
the obstacle. xc satisfies the geometrical condition

SðxcÞ ¼ 0: ð1Þ

Due to the obstacle, the motion of point xc is restricted unilaterally
without penetrating the surface S(x) = 0. The non-penetration con-
dition can be described as a kinematic constraint condition, which
is usually represented by the normal component of displacement
and stress, cf. [12],

uN ¼ u � N 6 0; rN ¼ rijNiNj 6 0; rNuN ¼ 0; ð2Þ

where N is the unit outer normal vector at xc on Cc. rN, associated
with stress rij, is equal to the normal component of the surface trac-
tion. The third equation of (2) is the Kuhn–Tucker complementary
condition.

Note that u(t, X) is a measure of the displacement happened
from time = 0 to t. In general, condition (2) about u(t, X) does not
necessarily represent the impenetrability after contact occurs at
time t. In cases of large deformation, depicted in Fig. 2, the dis-
placement of large deformation can be irrelevant to the normal
direction at the points in the surrounding area. The displacement
is not really constrained by (2). The normal also changes direction
due to large rotation accompanied with large deformation. The
normal will lose its meaning as reference for measurement of large
deformation by long time duration and the displacement condition
becomes inappropriate. We adopt the constraint condition in a riv-
al form with velocity

_uN ¼ _u � N 6 0; rN ¼ rijNiNj 6 0; rN _uN ¼ 0: ð3Þ

The velocity form of contact condition (3) is usually considered as
the first order approximation of the displacement form (2). Ref.
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[23] provided reasoning from mechanics point of view. See also [25]
for more discussions.

We adopt the Coulomb’s friction model, described mathemati-
cally, e.g., in [3],

jFT j 6 lFN;

jFT j < lFN ) _uT ¼ 0;
jFT j ¼ lFN ) 9k > 0; _uT ¼ �kFT ;

ð4Þ

where FN is the normal component of the surface traction, only
compression as positive is considered. FT is the tangential force vec-
tor and l is the friction coefficient. uT represents the tangential dis-
placement vector. The second relation of (4) is obvious, reflecting
the ‘‘sticking” situation with static friction. The third relation bares
the simple explanation that the friction force is in the opposite
direction of motion.

2. Variational principle for the dynamic contact problem

Assume that part of the boundary, Cu and Cs, are subjected to
prescribed displacement and traction respectively. Cu and Cs can
never be in contact with the obstacle. A portion of the rest of the
boundary, on which no displacement nor force is prescribed, can
be in contact or not in contact with the obstacle, and that can hap-
pen at some times or at all times. If a portion of such boundary is
not in contact at time t, we consider that zero traction is applied to
it. This kind of boundary may change in time. It is included in Cc as
contact boundary. The whole boundary C is now decomposed into
three disjoint parts.

To consider friction in the dynamic system, we need to examine
the tangential component rTi, whereas the condition for the nor-
mal component is still valid. We have the dynamic frictional con-
tact problem described as:

Problem D.

q€ui � rij;j ¼ fiðt; xÞ in X; i; j ¼ 1;2;3; ð5aÞ
uið0; xÞ ¼ U0

i ðxÞ; _uið0; xÞ ¼ U1
i ðxÞ in X; ð5bÞ

ui ¼ UiðtÞ on Cu; ð5cÞ
rijnj ¼ giðt; xÞ on Cs; ð5dÞ

_uN 6 0; rN 6 0; rN _uN ¼ 0
jrT j 6 ljrN j; if jrT j < ljrN j then _uTi ¼ 0

if jrT j ¼ ljrN j then 9k > 0; _uTi ¼ �krTi

8><>: on Cc;

ð5eÞ

_rij ¼ _rijðE; m; Et; xi; ui; _eij; . . .Þ; ð5fÞ
_eij ¼ ð _ui;j þ _uj;iÞ=2: ð5gÞ

Here, uTi and rTi in (5e) are the tangential displacement and tan-
gential traction respectively. The constitutive relation (5f) in rate
form is employed for the nonlinear analysis. E and m are the
Young’s modulus and Poisson ratio of elasticity. Et is the tangent
modulus for nonlinear material. Using the test functions vi, in the
same function set of velocity _ui, with ðv i � _uiÞjCu

¼ 0, the varia-
tional principle can be written asZ

X
ðq€uiðv i � _uiÞ þ rijðv i;j � _ui;jÞÞdX�

Z
CC

rijNjðv i � _uiÞdC

¼
Z

X
fiðv i � _uiÞdXþ

Z
CS

giðv i � _uiÞdC: ð6Þ

Note that on the portion of boundary Cc without contact, rN = 0, but
_uN 6 0 is not necessary. This portion of Cc has no contribution to
(6). For simplicity, here we consider Cc as the portion of boundary
really in contact with the obstacle.

With velocity and stress decomposed into normal and tangen-
tial components, we haveZ

CC

rijNjðv i � _uiÞdC ¼
Z

CC

ðrNðvN � _uNÞ þ rTiðvTi � _uTiÞÞdC: ð7Þ

Ref. [15] used this approach to treat the non-homogeneous bound-
ary value problems. Ref. [3] dealt with the contact problems with
non-homogeneous boundary conditions. The test function vi satis-
fies the first condition of (3) and rij satisfies the second one. It fol-
lows that

rNvN P 0: ð8Þ

Note that the Kuhn–Tucker condition is satisfied only by the true
solution, not necessarily by the arbitrary test function. Hence we
obtain an inequality

rNðvN � _uNÞP 0: ð9Þ

With (7) and (9), Eq. (6) leads toZ
X
ðq€uiðv i � _uiÞ þ rijðv i;j � _ui;jÞÞdX�

Z
Cc

rTiðvTi � _uTiÞdC

P
Z

X
fiðv i � _uiÞdXþ

Z
Cs

giðv i � _uiÞdC: ð10Þ

Recall (4) for the Coulomb’s friction model, jrT j = jFTj is considered a
function of the normal contact force, rN = FN. The frictional force is
in the opposite direction of the tangential velocity. Therefore

rTi _uTi ¼
0 if jrT j < ljrNj
�kjrT j2 ¼ �jrT jj _uT j if jrT j ¼ ljrNj

(
on Cc: ð11Þ

The negative sign in (11) indicates the dissipative nature of the
work done by the friction. A functional to represent the virtual
power of friction is introduced in [3], with the normal contact force
rN as a functional of displacement,

jðu;vÞ ¼
Z

Cc

ljrNðuÞjjvT jdC: ð12Þ

We can verify the following with the solution ui, for arbitrary test
function vi,

ljrNðuÞjðjvT j � j _uT jÞ þ rTiðvTi � _uTiÞP 0: ð13Þ

T=0
T=t1

No contact, 
with uN > 0

T=t2

Contact occurs 
with uN < 0

Fig. 2. Dynamic contact with large deformation.

 

Γc 

Fig. 1. Contact with an obstacle.
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