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a b s t r a c t

A rigorous finite element numerical procedure is proposed for the computation of guaranteed lower and
upper bounds for the limit load of failure in a system of linear-elastic blocks in mutual non-penetrative
contact with given friction. First the static and kinematic principles are formulated as continuous optimi-
zation problems and existence of a solution to the corresponding limit load problems at the infinite
dimensional level is established. Two numerical approaches are devised, one for each limit load problem,
to obtain actual numerical bounds on the unique critical load. The first approach uses the static limit load
problem involving stresses in conjunction with a non-standard conforming finite element method to
obtain a linear program from which one can derive a lower (safe) bound for the limit load and an expres-
sion for the corresponding stress field. The second approach uses the kinematic limit load problem to
obtain a linear optimization problem from which one can determine an upper (unsafe) bound for the
limit load and an expression for the failure mode. Together, these procedures give rise to rigorous numer-
ical enclosures on the limit load.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

A challenging problem in the analysis of solids, with many
important practical applications, such as the design and analysis
of mechanical structures, is the prediction of the failure load and
failure mode of structural assemblies. For structures assembled
from deformable blocks in mutual non-penetrative contact with
friction, when the compressive stresses are relatively low com-
pared to the peak compressive stress of the blocks, failure through
fracture or slip at the block-interfaces can be studied under the
general principles of elasto-plastic limit load analysis (see Chris-
tiansen [10], Section 6.4). On the one hand, the problem is to iden-
tify the values of a superimposed load which the structure can
carry without losing its equilibrium. This is the static principle of
limit load analysis. On the other hand, one is interested in predict-
ing the state of the structure under the ultimate load, i.e. the load
that would cause dislocations that lead to loss of equilibrium. This
is the kinematic principle of limit load analysis. For structures with
prescribed or Tresca friction, the static and kinematic limit loads
coincide, due to the duality principle, provided that the extrema
are computed exactly. In practice, however, this is rarely possible.
Nevertheless, existing approaches tend to concentrate on one or

the other of the limit load principles to obtain an approximate va-
lue for the theoretical limit load.

In the case of a rigid, perfectly plastic solid, the problem of limit
load analysis is to find the maximum static load distribution which
the solid can sustain without collapsing, i.e. without plastic flow
(permanent deformation) occurring, and to determine the fields
of stresses and flow (velocities) in the material at the moment of
collapse. For this problem, the collapse load is given by the solution
of an infinite dimensional saddle-point problem which can be dis-
cretised by mixed finite elements and the resulting mathematical
programming problem solved to approximate both the collapse
fields of stresses and velocities. Efficient procedures for the compu-
tation of strict lower and upper bounds for the exact limit load for
plane stress and plane strain models are proposed in Ciria et al.
[12] and Muñoz et al. [35].

For the block assemblies, which are to be considered here, the
fact that these assemblies are usually strong in compression, but
not in tension, has given rise to models with various contact laws.
In Drucker [13], the principle of virtual work is employed to find
analytical lower and upper (albeit wide) bounds for the collapse
load of elasto-plastic structures when yield is associated with Cou-
lomb friction. As a result, the lower bound is provided by the limit
load for frictionless contact, which in general is equal to zero, while
the upper bound is given by the limit load for contact without rel-
ative sliding at interfaces. Geometric lower and upper bounds in
the plastic analysis of structures assembled from perfectly rigid
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blocks under hinging, i.e. without relative sliding of the blocks, are
proposed in Heyman [23]: for a given structure under a superim-
posed live load, if the three requirements of equilibrium, yield,
and plastic deformation are all satisfied, then the live load is equal
to the unique collapse load; if only the conditions of equilibrium
and yield are considered, then a safe estimate is achieved; if only
the plastic mode of deformation is assumed, then an over-estimate
of the true collapse load is obtained (see also [24,25]). Numerical
approaches for structures assembled from rigid blocks in frictional
contact described as discrete mathematical programs were pio-
neered by Livesley [31], and later developed by Melbourne and
Gilbert [33], Fishwick [17], Baggio and Trovalusci [7], Fishwick
et al. [18], Ferris and Tin-Loi [16], Orduña and Lorenço [37], Tro-
valusci and Baggio [38], Gilbert et al. [20]. An extension of the re-
sults for the plastic case to a finite element model of no-tension
structures assembled from isotropic linear-elastic blocks is given
in Maier and Nappi [32], where limit load bounds are determined
by proportionally increasing the live load until a solution to the
mathematical program for static equilibrium can no longer be ob-
tained. A more general model with friction is proposed in Boothby
and Brown [8], where a lower bound for the exact limit load is de-
fined as a load for which the system is known to be stable, and an
upper bound is defined as a load for which the system is known to
be unstable.

While the study of finite dimensional structural models is moti-
vated by the increasing need for effective computational tech-
niques required in practical applications, little attention has been
paid to the associated infinite dimensional problems. In this paper,
planar systems of linear-elastic blocks in mutual non-penetrative
contact with Tresca friction are considered, under the assumption
that plastic failure in a system may occur solely through potential
fracture or slip at the contact zone, while the blocks maintain their
linearly elastic behaviour (see also [2–4,34]). For reviews of com-
putational methods for contact problems in solid mechanics, we
refer to Johnson [29], Wriggers [39], Acary and Brogliato [1]. By
working in the theoretical framework of variational inequalities
(Duvaut and Lions [14], Glowinski et al. [21], Hlaváček et al. [27],
Kikuchi and Oden [30], Haslinger et al. [22], Eck et al. [15]), the lim-
it load principles are formulated as variational problems, and nec-
essary and sufficient conditions for the existence of a solution are
derived. A unified theoretical treatment of the static and kinematic
limit load problems is achieved by exploiting the duality principle,
and two complementary numerical procedures for the evaluation
of guaranteed lower and upper bounds on the limit load are de-
vised. Specifically, the static limit load problem is formulated in
terms of the stress (dual) variable and the kinematic limit load
problem in terms of the displacement (primal) variable. The exis-
tence of a solution to each of these two problems is guaranteed un-
der the following two conditions: (i) the range of admissible fields
must be a non-empty set, and (ii) the associated energy functional
must be coercive on the convex set of admissible fields. In the case
of the static problem, if condition (i) can be shown to be satisfied,
then it is easy to verify that condition (ii) also holds. On the other
hand, for the kinematic problem, while condition (i) can be easily
verified, it is more difficult to establish conditions on the load un-
der which condition (ii) holds. In the first computational approach,
in order to obtain a lower bound for the true limit load, the static
limit load problem is discretised using the lowest order finite
element method due to Arnold and Winther [6]. This offers a
procedure for verifying that condition (i) holds, by exhibiting a
non-empty subset of feasible finite element solutions, and in addi-
tion provides a useful numerical approximation for the static limit
load problem. Whilst the use of finite elements to approximate the
stress in a dual energy formulation is not unusual, their use in
identifying whether or not a set is non-empty is rather novel.
The resulting discrete problem reduces to a linear program in the

divergence-free space, from which the lower (safe) bound for the
limit load and the associated stress distribution are obtained. In
the second approach, the kinematic limit load problem is ex-
pressed as a linear optimization problem from which an upper (un-
safe) bound for the limit load and the failure mode are determined.

The rest of this paper is organised as follows: in Section 2, the
block structure modelled as a contact problem is described, and
the corresponding equivalent variational formulations are pre-
sented. In Section 3, the static limit load problem is formulated
and approximated by the lowest order Arnold–Winther finite ele-
ment method, to show existence of a solution and to derive com-
putational lower bounds for the limit load. To handle the contact
conditions, the degrees of freedom are modified and an equivalent
formulation of the original finite element method is used. The de-
tails of the modified version of the finite element method are given
in Appendix. In Section 4, the kinematic limit load problem is ana-
lysed and upper bounds for the limit load and the failure mode are
derived. In Section 5, the main results are summarised and the
duality principle is formally proved. In order to illustrate the theo-
retical results, in Section 6, several block assemblies are treated
numerically.

2. Problem description

Let X ¼ X1 [ � � � [XS � R2; S P 2, represent the structure under
consideration, with Xs; s ¼ 1; . . . ; S, polygonal linearly elastic blocks
in non-penetrative frictional contact. The global boundary
C ¼ @X1 [ � � � [ @XS is partitioned as C ¼ CC [ CE, where CC – ; is
the potential contact zone consisting of the interfaces between
blocks, and CE ¼ C n CC is the exterior boundary of the overall
structure.

On the contact zone CC:

� the non-penetrative contact model is given by the conditions:

½uN� 6 0; rN 6 0; ½uN �rN ¼ 0;

� the Tresca friction is defined by the relations:

jrT j 6 G; ½uT �ðjrT j � GÞ ¼ 0; ½uT �rT 6 0;

where the indices N and T indicate the normal and tangential direc-
tions, respectively, which are given an arbitrarily unique value on
every common edge between two blocks, uN and uT are the normal
and tangential displacements, respectively, rN and rT are the nor-
mal and tangential stresses, respectively, G P 0 is the Tresca friction
bound, and ½�� represents the jump across a potential contact edge.

The exterior boundary is partitioned as CE ¼ CD [ CS [ CB,
where:

� on CD a fixed support is assumed:

uN ¼ 0 and uT ¼ 0;

� on CS the conditions are of simple support:

uN ¼ 0 and rT ¼ 0;

� on CB – ; boundary tractions are acting:

rN ¼ FB
N and rT ¼ FB

T :

The structure is subjected to a dead load induced by the volume
force fD over X and the boundary tractions FB on ;– CB � CE.

2.1. Primal (displacement) formulation

The closed convex cone of kinematically admissible displace-
ments is defined as follows:
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