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a b s t r a c t

The over-determined formulation of the immersed boundary conditions (IBC) method is proposed. The
method relies on the Fourier expansions in the periodic direction and Chebyshev expansions in the trans-
verse direction. The boundaries of the physical domain are immersed inside a regular computational
domain and the boundary conditions enter the algorithm in the form of constraints. Construction of these
constraints provides degrees of freedom in excess of that required to formulate a closed system of alge-
braic equations. Use of the additional degrees of freedom that leads to an over-determined system is
explored in order to improve the accuracy of the IBC method and to expand its applicability to more
extreme geometries. The over-constraint formulation has been tested on three model problems that lead
to the Laplace, biharmonic and Navier–Stokes equations and thus cover the most commonly encountered
types of operators. In all cases tested the over-determined formulation was found to improve the perfor-
mance of the IBC method.

Crown Copyright � 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

‘Immersed boundary’ (IB) methods refer to a class of methods
where the computational domain extends beyond the physical do-
main resulting in edges of the physical domain immersed inside
the computational domain. The name has been coined by Peskin
[1] in the context of cardiac mechanics problems. The concept is
very attractive as one can work with a fixed, regular computational
domain regardless of the shape of the physical domain, i.e., the cost
of generating boundary conforming grid has been completely elim-
inated. Field equations can be discretized using a simple reference
coordinate system and are never changed regardless of the geom-
etry of the physical domain. The main challenge associated with
this method is the development of procedures that result in the
enforcement of physical boundary conditions along the physical
boundaries located inside of the computational domain. There
are no conditions to be imposed along the edges of the computa-
tional domain (unless the edges of the physical and computational
domains coincide) and thus the problem formulation needs to be
closed by a set of constraints rather then by the classical boundary
values. The IB method has been developed primarily in the context
of fluid flow problems. The prevailing procedure for imposition of
constraints replacing physical boundary conditions involves intro-
duction of additional forcing that makes the fluid to move along
the physical boundary. This methodology has roots in the physics
of the problem, requires good understanding of the problem, and

algorithm calibration involves elements of trial and error. Details
of procedures based on the so-called continuous and discrete forc-
ing are reviewed in [2,3].

Fictitious domain methods [4,5] offer an alternative approach
for handling boundary irregularities where problems formulated
on a complicated domain are solved on a simpler domain that con-
tains the complicated domain. Use of simple domain enables effi-
cient computational grid generation. The fictitious domain
method is very suitable for moving boundary problems as it does
not require regeneration of grid to account for the changing bound-
ary geometries [5].

A separate group of methods has its roots in the methodology
developed for handling the moving boundary problems and has
been reviewed in [6]. Here one should focus on the fixed grid
methods where the motion of the interface is tracked through a
reference fixed grid. The most popular methods are based on the
fluid fluxes and are known as the volume of the fluid (VOF) meth-
od. More recent methods rely on the concept of level set [7,8]. All
these methods are of low-order in terms of spatial accuracy as they
are based on the low-order finite-difference and/or finite-volume
discretizations, and the interface tracking procedures result in
smearing of the interface.

An alternative direction for handling boundary irregularities
has been proposed by Szumbarski and Floryan [9] and is referred
to as the immersed boundary conditions (IBC) method in the pres-
ent work. The IBC method is conceptually similar to the IB methods
as the physical field of interest is immersed inside the computa-
tional domain. However, unlike the IB method, the IBC method
does not use additional forcing to impose the physical boundary
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conditions rather transforms the original boundary value problem
into an internal value problem. The concept behind the IBC method
is also different from the fictitious domain method as it does not
simplify the geometry of the problem to enforce the boundary con-
ditions [4]. The IBC method leads to a formal construction of
boundary constraints that provide the required closing relations.
Spatial discretization relies on the spectral expansions and thus
provides ability to reach machine level accuracy. The boundary
constraints rely on the representation of physical boundary in
the spectral space and nullifying the relevant Fourier modes. Such
implementation is limited to geometries that can be represented
by Fourier expansions but results in a gridless algorithm as all pos-
sible variations of boundary geometries are described in terms of
the Fourier coefficients only. The programming effort associated
with modeling of changes of geometry has been essentially re-
moved as the only information required for specifying the new
geometry is reduced to a set of Fourier coefficients provided as in-
put to the code. The additional attractiveness of this concept is
associated with the precise mathematical formalism, high accuracy
and sharp identification of the location of physical boundaries. This
method has been successfully extended to unsteady problems [10]
as well as moving boundary problems [11,12] where the boundary
geometries are time-dependent. The computational advantage of
this approach over conventional mapping-based spectral algorithm
is more evident for the moving boundary problems [11,12], be-
cause only the entries in the coefficient matrix corresponding to
the discretized boundary conditions are required to be computed
at each time step while part of the coefficient matrix correspond-
ing to the discretized field equations needs to be constructed only
once. The special structure of the coefficient matrices resulting
from the algorithm also provides opportunities for devising more
efficient iterative solution methods [10–12]. While the IBC method
has been successfully employed for various classes of problems, it
has limitations in terms of severity of boundary geometry that can
be handled accurately. Various tests have shown that if either the
wave number of the physical boundary corrugation or the ampli-
tude of this corrugation is too large, the method fails to provide
an acceptable accuracy [9–12].

The present work addresses the limitations of the IBC method
discussed above. The IBC method relies on the Galerkin projection
for the construction of discretized analog of the field equations.
Some of the projection equations are eliminated to provide ‘‘space”
for the boundary conditions, which are imposed in the Tau-like
manner. The boundary conditions are ‘‘discretized’ using the IBC
concept resulting in a number of boundary constraints that is far
in excess of that required to formulate a closed system of algebraic
equations. In the ‘‘classical” formulation of the IBC method [9], only
the number of boundary constraints required to form a closed sys-
tem is retained and boundary constraints corresponding to the
lowest (dominant) Fourier modes are used for this purpose. Use
of additional available constraints could lead to an increase in
the accuracy of the IBC method and could extend its applicability
to more extreme geometries, but leads to an over-determined for-
mulation of the problem. Since we have chosen to work with the
over-determined formulation, we can also explore whether the
use of all available projection equations offers any computational
advantage.

The possible gains associated with the over-determined formu-
lation of the IBC method could be problem dependent. In order to
provide a definite answer, we have tested this formulation on three
model problems involving most commonly found operators, i.e.,
the Laplace operator, the biharmonic operator and the Navier–
Stokes equations. In each case, we have used the same class of
geometries for testing purposes so that the reader can identify is-
sues associated with the progressively more complicated opera-
tors. Section 2 discusses model geometry. Section 3 provides

description of the method for the Laplace equation. Section 4 is de-
voted to the solution of a model problem that leads to a biharmon-
ic operator. Section 5 provides discussion of the solution of the
Navier–Stokes equations. Section 6 provides a short summary of
the main conclusions. In order to provide reliable testing of the
accuracy of the over-determined formulation, we have determined
reference solutions by solving all three model problems using the
mapping method that leads to the classical treatment of boundary
conditions. A brief outline of the relevant algorithms is given in
Appendices A, B, C for the Laplace, biharmonic and Navier–Stokes
problems, respectively.

2. Model geometry

We select model geometry in the form of a two-dimensional
slot extending to �1 in the x-direction and periodic with the
wavelength k ¼ 2p=a (see Fig. 1). The slot is bounded by walls
whose geometry is expressed in terms of Fourier expansions in
the form

yLðxÞ ¼ �1þ
Xn¼þNA

n¼�NA

HðnÞL einax; yUðxÞ ¼ 1þ
Xn¼þNA

n¼�NA

HðnÞU einax; ð2:1a;bÞ

where HðnÞL ¼ Hð�nÞ
L

� ��
;HðnÞU ¼ Hð�nÞ

U

� ��
and the asterisk denotes com-

plex conjugate. Such geometries are of interest in simulations of
various physical phenomena where surface roughness plays impor-
tant role, e.g., electrical micro-capacitors, micro-heat exchangers,
laminar-turbulent transition, electrostatic filters, etc. We have se-
lected three types of field equations that the reader might encoun-
ter in such applications, i.e., the Laplace equation (discussed in
Section 3), the biharmonic equation (discussed in Section 4) and
the Navier–Stokes equations (discussed in Section 5). These equa-
tions are linear second-order, linear fourth-order and nonlinear
fourth-order, respectively, and thus provide ample opportunity for
illustration of the performance of the algorithm.

3. Problems described by the Laplace equation

The Laplace equation governs different types of practical flow
problems, e.g., conductive heat flow, ground-water hydrology, po-
tential flow, etc. In our case we shall consider the Laplace equation
to be describing the conductive heat flow in a corrugated slot
whose geometry has been defined in Section 2.

3.1. Problem formulation

The dimensionless field equation describing heat flow at steady
state has the form
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Fig. 1. Sketch of the domain of interest in the physical plane.
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