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a b s t r a c t

The geometric element transformation method (GETMe) has been introduced as a new element driven
approach to mesh smoothing. It is based on simple geometric transformations, which, if applied itera-
tively, lead to the regularization of mesh elements. Global mesh smoothing can be accomplished by suc-
cessively improving the worst elements or by averaging node positions obtained by the simultaneous
transformation of all elements. GETMe smoothing has been successfully applied in the case of surface
meshes. As shown in this paper, this approach also naturally extends to tetrahedral mesh smoothing
without major conceptual modifications. A regularizing transformation for tetrahedra is presented and
a combined approach of simultaneous and sequential GETMe smoothing is described. First numerical
examples yield high quality meshes superior to those obtained by other geometry-based methods. In fact,
the presented results are in a majority of cases at least comparable to those obtained by a state of the art
global optimization-based method.

� 2009 Elsevier B.V. All rights reserved.
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Let no one ignorant of geometry enter.
Plato

1. Introduction

In many finite element applications unstructured tessellations of
the geometry under consideration play a fundamental role. There-
fore, the generation of quality meshes is an essential step of the sim-
ulation process, since mesh quality has an impact on solution
accuracy and the efficiency of the computational methods involved
[1,2].

In the case of tetrahedral meshes, a lot of effort has been put
into the development of quality mesh generators [3], which are
based, for example, on advancing front techniques [4,5], Octtree
methods [6], constrained Delaunay tessellations [7], and its vari-
ants [8]. In addition, specialized algorithms exist, for example, in
order to efficiently remesh feature models [9]. Within this context,
mesh improvement methods play an important role, since in many
cases they are incorporated into the mesh generation process or
used as a post-processing step. Additionally, they are also applied

after mesh modifications caused, for example, by mesh merging
or boundary movements.

Mesh improvement techniques can roughly be classified into
methods that modify mesh topology and those which do not.
Topology modifying methods are based on inserting and deleting
nodes or changing connectivity by edge or face swapping (e.g.
[10–12]). In contrast, topology-preserving methods, known as
smoothing methods, are only based on node movements.

One of the most popular smoothing methods is Laplacian
smoothing [13] due to its computational and implementational sim-
plicity. In this, each node is successively replaced by the average of
its directly connected neighboring nodes. Since this geometry-based
approach is not geared towards improving element quality, the over-
all mesh may deteriorate and inverted elements may occur. There-
fore, smart variants have been proposed, which accomplish a node
update only if it leads to an improvement with respect to a given
quality criterion [14]. Compared to triangular meshes, Laplacian
smoothing is less efficient in the case of tetrahedral meshes, since
the variety of adverse topological and geometrical configurations
leading Laplacian smoothing to fail increases in 3D.

In contrast to the geometry-based approach of Laplacian
smoothing, optimization-based smoothing methods determine
new node positions by minimizing an objective function based
on a suitable quality criterion. In order to compute new node posi-
tions, local optimization methods assess the quality of adjacent
elements [15]. This leads to methods which can be combined with
classical Laplacian smoothing in order to moderate the higher
computational complexity [14] or even be used to untangle
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meshes [16]. The good quality achieved by local optimization-
based methods can be further improved by using global optimiza-
tion-based methods, which incorporate all mesh elements into the
objective function [17,18]. Naturally, this leads to a higher imple-
mentational and computational complexity. Hence, very large
meshes pose a problem for global optimization-based methods.
This can be circumvented by the use of streaming techniques [19].

Not least in the context of optimization-based methods, alge-
braic quality metrics [20] have gained importance. For example,
the inverse mean ratio quality metric, which measures the distance
from a given element to an ideal reference element. By analyzing
two energy functions based on conformal and isoparametric map-
pings, this metric has been recently shown in [21] to be equivalent
to the angle-preserving energy. Hence, mesh optimization results
in minimizing the energy. Also alternative approaches exist, which
are for example based on space mapping techniques [22].

The geometric element transformation method (GETMe) intro-
duced in [23] for triangular surface meshes and in [24] for mixed
surface meshes is a geometry-based mesh smoothing method. In
contrast to other smoothing methods an element driven approach
is used. The key to GETMe smoothing lies within a simple geomet-
ric element transformation, which, if applied iteratively, leads to a
successive regularization of the element, thus to an improvement
of element quality. Thereby, the regularization speed can be con-
trolled by specific transformation parameters, which also enables
a quality driven smoothing control. First examples showed that
the GETMe approach leads to superior results if compared to other
geometry-based smoothing methods. Furthermore, it reaches or
even outperforms the mesh quality obtained by global optimiza-
tion-based smoothing methods.

Due to its general approach, GETMe smoothing naturally ex-
tends to tetrahedral meshes, as will be shown in this paper. By
mainly focusing on the concepts and principles of this new ap-
proach, a regularizing transformation for tetrahedral elements
according to [25] is presented in Section 2 and basic properties
of the transformation are discussed. Additionally, descriptions of
two basic GETMe smoothing methods using a sequential and a
simultaneous element transformation approach respectively are
given in Section 3. These two concepts will be combined in order
to derive a new GETMe variant representing the central result of
this paper. First numerical results, given in Section 4, substantiate
the potential of GETMe smoothing by comparing its results to
those of smart Laplacian smoothing and a global optimization-
based method.

2. Transformation of single elements

The key to the geometric element transformation method lies
within the proper choice of a regularizing element transformation.
By this, regularizing means that if the transformation is applied
iteratively to a single element, it becomes regular and hence of bet-
ter quality with respect to standard element quality metrics. Con-
sequently, this section focuses on the properties of the
transformation applied to a single tetrahedron detached from the
mesh smoothing context examined in subsequent sections.

2.1. Transformation of a tetrahedron

Let T :¼ ðp1; p2; p3; p4Þ
t denote a tetrahedron with the four pair-

wise disjoint nodes pi 2 R3; i 2 f1; . . . ;4g, which is positively ori-
ented. That is detðDðTÞÞ > 0 with

DðTÞ :¼ ðp2 � p1; p3 � p1;p4 � p1Þ ð1Þ

representing the ð3� 3Þ-matrix of the difference vectors, which
span the tetrahedron T. Furthermore, let

n1 :¼ ðp4 � p2Þ � ðp3 � p2Þ;
n2 :¼ ðp4 � p3Þ � ðp1 � p3Þ;
n3 :¼ ðp2 � p4Þ � ðp1 � p4Þ;
n4 :¼ ðp2 � p1Þ � ðp3 � p1Þ

denote the inside oriented face normals of T.
A new tetrahedron T 0 with nodes p0i is derived from T by con-

structing on each node pi the opposing face normal ni scaled by
r=

ffiffiffiffiffiffiffi
jnij

p
, where r 2 Rþ0 . That is
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An initial tetrahedron T and its transformed counterpart T 0

using r ¼ 1 are depicted exemplarily in Fig. 1. In this, associated
faces and normals are marked by the same color. The edges of
the resulting tetrahedron T 0 are indicated by thick black lines.

2.2. Properties of the transformation

Due to the orientation of the normals, the transformation en-
larges the tetrahedron. Thereby, the magnification is scalable by
the factor r. In the case of r ¼ 0 it holds that T ¼ T 0. Furthermore,
since the normals ni are scaled by 1=

ffiffiffiffiffiffiffi
jnij

p
, the transformation is

scale invariant, i.e. for s > 0 it holds that ðsTÞ0 ¼ sT 0.
Of particular importance for the mesh smoothing application

described later on is the regularizing effect of the transformation.
That is, if the transformation is applied iteratively, the resulting
tetrahedra become more and more regular. In order to assess the
regularity of a tetrahedron T numerically, the mean ratio quality
criterion [18,20] will be used. It is given by

qðTÞ :¼ 3 detðSÞ2=3

kSk2
F

; ð3Þ

with kSkF :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðStSÞ

q
denoting the Frobenius norm of the matrix

S :¼ DðTÞW�1. Hereby, DðTÞ represents the difference matrix given
by (1) and

Fig. 1. Transformation of a tetrahedron using r ¼ 1.
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