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a b s t r a c t

A Kirchhoff–Love shell element is developed on the basis of the isogeometric approach [16]. NURBS as
basis functions for analysis have proven to be very efficient and offer the great feature of exact geometric
representation. For a Kirchhoff–Love shell element they additionally have the significant advantage that
the necessary continuities between elements are easily achieved. The element is formulated geometri-
cally nonlinear. It is discretized by displacement degrees of freedom only. Aspects related to rotational
degrees of freedom are handled by the displacement control variables, too. A NURBS-based CAD program
is used to model shell structures built up from NURBS and isogeometric analysis is performed on the
same model without meshing. Different examples show the performance of this method and its applica-
bility for the integration of design and analysis.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In classical shell theory one has to distinguish between thick
shells ðR=t < 20Þ and thin shells ð20 6 R=tÞ. The appropriate theory
to describe thick shells is the Reissner–Mindlin theory where
transverse shear deformations are taken into account. For thin
shells the Kirchhoff–Love theory is applicable which assumes that
transverse shear deformations are negligible. For very thin shells
ð1000 < R=tÞ the deformations usually cannot be described by geo-
metrically linear behaviour and a geometrically nonlinear descrip-
tion is necessary. Very thin shells, like thin metal sheets, play an
important role in many industrial applications, e.g. in automotive
and aerospace industry. Although most shell structures in practical
engineering applications are in the range of thin and very thin
shells and most analytical solutions for shells are based on the Kir-
chhoff–Love theory, the Reissner–Mindlin theory is more spread in
finite element codes. This is mainly due to the fact that for Reiss-
ner–Mindlin elements only C0 continuity is required between ele-
ments which allows the use of very simple shape functions.
However, these low order elements exhibit various locking phe-
nomena and great endeavour has been devoted in the past to cir-
cumvent these locking effects. For Kirchhoff–Love elements C1

continuity is required between elements which is quite difficult
to achieve for free-form geometries when using standard polyno-
mials as basis functions. NURBS (nonuniform rational B-Splines)

are smooth, higher order functions which are used for geometric
design and have become standard in CAD (computer aided design)
programs. They allow great geometric flexibility and high order
continuities at the same time. NURBS are therefore ideally suited
as basis functions for Kirchhoff–Love shell elements.

The idea of using NURBS as basis functions for analysis was
introduced by Hughes et al. [16], and was named isogeometric
analysis. In isogeometric analysis the functions from the geometry
description are used as basis functions for the analysis. Thus, the
analysis works on a geometrically exact model and no meshing is
necessary. This offers a possibility to close the existing gap be-
tween design and analysis as both use the same geometry model.
As CAD design models of thin-walled structures are often con-
structed by surfaces rather than volumes, shell analysis appears
to be the corresponding analysis method for these applications.

In this work we present a Kirchhoff–Love shell element based
on the isogeometric concept. A geometrically nonlinear formula-
tion makes it also applicable to very thin shells under large rota-
tions. First, a brief review of NURBS and isogeometric analysis is
given. Then the newly-proposed element formulation is derived
and various examples show the good performance of this element.
In the last chapter the applicability of this method for the integra-
tion of CAD and analysis is demonstrated.

2. NURBS and isogeometric analysis

NURBS are a generalization of B-Splines and most of the fea-
tures of NURBS also apply to B-Splines, so first a short introduction
to B-Splines is given.
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2.1. B-Splines

A B-Spline is a non-interpolating, piecewise polynomial curve. It
is defined by a set of control points Pi; i ¼ 1; . . . ;n, the polynomial
degree p and a so called knot vector N ¼ ½n1; n2; . . . ; nnþpþ1�. The knot
vector is a set of parametric coordinates ni in non-descending order
which divide the B-Spline into sections. If all knots are equally
spaced, the knot vector is called uniform. A B-Spline basis function
is C1 continuous inside a knot span, i.e. between two distinct
knots, and Cp�1 continuous at a single knot. A knot value can
appear more than one time and is then called a multiple knot. At
a knot of multiplicity k the continuity is Cp�k.

If the first and the last knot have the multiplicity pþ 1, the knot
vector is called open [10,21]. In a B-Spline with an open knot vector
the first and the last control point are interpolated and the curve is
tangential to the control polygon at the start and the end of the
curve. Open knot vectors are standard in CAD applications and
are assumed for the remainder of this text.

2.2. Basis functions

B-Spline basis functions are computed by the Cox–deBoor
recursion formula [10,21]. It starts for p ¼ 0 with:

Ni;0ðnÞ ¼
0 ni 6 n < niþ1;

1 otherwise:

�
ð1Þ

For p P 1 it is

Ni;pðnÞ ¼
n� ni

niþp � ni
Ni;p�1ðnÞ þ

niþpþ1 � n

niþpþ1 � niþ1
Niþ1;p�1ðnÞ: ð2Þ

From this formulation some important properties of B-Spline
basis functions can be deduced:

� Local support, i.e. a basis function Ni;pðnÞ is non-zero only in the
interval ½ni; niþpþ1�.

� Partition of unity, i.e.
Pn

i¼1Ni;pðnÞ ¼ 1.
� Non-negativity, i.e. Ni;pðnÞP 0.
� Linear independence, i.e.

Pn
i¼1aiNi;pðnÞ ¼ 0 () aj ¼ 0; j ¼

1;2; . . . ; n.

Fig. 1 shows an example of cubic B-Spline basis functions with
an open knot vector.

2.3. B-Spline curves

A B-Spline curve of degree p is computed by the linear combina-
tion of control points and the respective basis functions:

CðnÞ ¼
Xn

i¼1

Ni;pðnÞPi: ð3Þ

Fig. 2 shows an example of a cubic B-Spline with an open knot vec-
tor. Due to the open knot vector the first and last control point (P1

and P7) are interpolated and it can be seen that the curve is tangen-
tial to the control polygon at its start and end.

2.4. B-Spline surfaces

A B-Spline surface is computed by the tensor product of B-
Spline basis functions in two parametric dimensions n and g. It is
defined by a net of n�m control points, two knot vectors N and
H, two polynomial degrees p and q (which do not need to be equal),
and correspondingly the basis functions Ni;pðnÞ and Mj;qðgÞ. It is de-
scribed as:

Sðn;gÞ ¼
Xn

i¼1

Xm

j¼1

Ni;pðnÞMj;qðgÞPi;j: ð4Þ

Fig. 3 shows an example of a quadratic B-Spline surface and its con-
trol net. Due to the open knot vectors the control points at the ver-
tices of the surface are interpolated. The black lines on the surface
mark the knots which divide the surface into elements.

2.5. NURBS

NURBS are nonuniform rational B-Splines. For NURBS each con-
trol point has additionally to its coordinates an individual weight
wi. Such a point Piðxi; yi; zi;wiÞ can be represented with homoge-
neous coordinates Pw

i ðwixi;wiyi;wizi;wiÞ in a projective R4 space.
A NURBS curve is the projection of a B-Spline in R4 with homoge-
neous control points onto R3 [21]:

CðnÞ ¼
Pn

i¼1Ni;pðnÞwiPiPn
i¼1Ni;pðnÞwi

: ð5Þ

A NURBS surface is defined as

Sðn;gÞ ¼
Pn

i¼1

Pm
j¼1Ni;pðnÞMj;qðgÞwi;jPn

k¼1

Pm
l¼1Nk;pðnÞMl;qðgÞwk;l

Pi;j: ð6Þ

NURBS are able to exactly represent some important geometric
entities, like e.g. conic sections (i.e. circles, cylinders, spheres, etc.).
Moreover, a B-Spline is a special case of a NURBS where all weights
are equal and is therefore automatically contained in all the subse-
quent derivations for NURBS-based elements.

2.6. Continuity

For parametric curves and surfaces there are two kinds of
continuity, the geometric and the parametric continuity. For the

Fig. 1. Cubic B-Spline basis functions with open knot vector N ¼ ½0;0; 0; 0;0:25; 0:5;0:75;1;1;1;1�.
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