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a b s t r a c t

This contribution presents an approach for solving reliability-based optimization problems involving
structural systems under stochastic loading. The associated reliability problems to be solved during
the optimization process are high-dimensional (1000 or more random variables). A standard gradient-
based algorithm with line search is used in this work. Subset simulation is adopted for the purpose of
estimating the corresponding failure probabilities. The gradients of the failure probability functions are
estimated by an approach based on the local behavior of the performance functions that define the failure
domains. Numerical results show that only a moderate number of reliability estimates has to be per-
formed during the entire design process. Two numerical examples showing the effectiveness of the
approach reported herein are presented.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Structural optimization is concerned with achieving an optimal
design while satisfying certain constraints. In this regard, the opti-
mal design can be defined as the best feasible design according to a
preselected quantitative measure of effectiveness [3,10,11,14]. In
most structural engineering applications, response predictions
are based on structural models whose parameters are uncertain.
This is due to a lack of information about the value of system
parameters external to the structure, such as environmental loads
(wind loading, water wave excitation, traffic loading, earthquake
excitation, etc.) or internal such as material properties, construc-
tion defects and system behavior. Under uncertain conditions the
field of reliability-based optimization provides a realistic and ra-
tional framework for structural optimization which explicitly ac-
counts for the uncertainties [12]. It is noted that due to uncertain
conditions, reliability-based optimization formulations are consid-
erably more involved than their deterministic counterpart.

Reliability-based optimization requires advanced and efficient
tools for structural modeling, reliability analysis and mathematical
programming. Modeling and analysis techniques of mechanical
systems based on local approximations are well established and
sufficiently well documented in the literature [6,45]. On the other
hand, several tools for assessing structural reliability have lately
experienced a substantial development providing solution to a
number of complex problems [5,7,19–21,23,31,38]. In the field of

reliability-based optimization several procedures have been re-
cently developed allowing the solution of quite demanding prob-
lems. Such procedures are usually based on a combination of
approximation concepts with standard deterministic optimization
techniques [1,8,9,13,16,17,22,26,29,30], or stochastic search algo-
rithms [24,40,41]. The use of approximate models, i.e. meta-mod-
els, in reliability analysis and reliability-based optimization has
been proposed in a number of publications [13,32,34,36]. In addi-
tion, recent developments of efficient and robust sensitivity analy-
sis techniques are closely related to the construction of meta-
models for complex structural systems [4,27,35,42,44]. Stochastic
search algorithms have also proved to be useful tools for solving
challenging optimization problems. In these approaches the values
of the random functions are used directly as inputs to the optimi-
zation algorithm [40,41]. The algorithms used in these cases are
generally direct search schemes which only use the values of ran-
dom functions to be optimized as inputs. For a thorough review of
the previous and other recent advances in the context of optimiza-
tion problems considering uncertainties it is referred to, e.g.
[37,39].

The use of the above optimization approaches has been found
useful in a number of structural optimization applications. How-
ever, the application of reliability-based optimization to stochastic
dynamical systems remains somewhat limited. For example, on
one hand, meta-modeling techniques are not well suited to large
scale optimization problems when the number of design variables
is relatively large. This is specially prohibitive when considering
large scale simulation models. On the other hand, most of the
methodologies proposed in the literature for the solution of
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reliability-based optimization problems of stochastic dynamical
systems do not possess proven convergence properties. Therefore,
there is still much room for further developments in this area.

It is the objective of this work to implement a methodology for
the solution of reliability-based optimization problems of stochas-
tic dynamical systems with monotonic convergence properties.
That is, the purpose of this paper is not in the development of
new optimization algorithms but to introduce a general framework
for solving a challenging class of structural optimization problems
considering uncertainties. The solution of this type of problems is
extremely demanding since involves reliability and sensitivity
analyses in high-dimensional parameter spaces during the optimi-
zation process. Novel aspects of this contribution refer to an effec-
tive integration of the algorithm for optimization and reliability
assessment. In particular, a new approach for efficient sensitivity
estimation of probabilities is presented, which is based on an
approximate representation of the structural response; this ap-
proach is numerically inexpensive, as it requires a single reliability
analysis only, in addition to some structural analyses for estimat-
ing the sought sensitivities. The information on sensitivities is used
in order to determine search directions in the space of the design
variables within the optimization algorithm. In addition, a line
search scheme specially designed for handling probabilistic con-
straints is introduced, in which a polynomial approximation of
the probability is generated using information on the function va-
lue and its derivative (as suggested in [25,43]). The advantage of
the proposed scheme is that it requires a very low number of reli-
ability analyses in order to provide an accurate representation of
the probability along the search direction.

The structure of this paper is as follows. In Section 2, the
mathematical formulation of the reliability-based optimization
problem is presented. Section 3 briefly describes the optimization
algorithm used in this contribution (which is a well-known first-
order scheme ). Next, Section 4 addresses several implementation
issues; among these, salient issues discussed are the approach for
reliability sensitivity estimation and the application of the spe-
cialized line search scheme. Finally, two application problems
are presented to illustrate the performance of the proposed
methodology.

2. Reliability-based optimization problem

2.1. Formulation

Consider the following structural optimization problem:

Min CðfxgÞ
subject to hiðfxgÞ 6 0; i ¼ 1; . . . ;n;

giðfxgÞ 6 0; i ¼ 1; . . . ;m;

siðfxgÞ ¼ faigTfxg � bi 6 0; i ¼ 1; . . . ; l;

ð1Þ

where fxg; xi; i ¼ 1; . . . ;nd is the vector of design variables, CðfxgÞ
is the objective function, hiðfxgÞ 6 0; i ¼ 1; . . . ;n are the reliability
constraints, giðfxgÞ 6 0; i ¼ 1; . . . ;m are the deterministic non-lin-
ear constraints, and siðfxgÞ 6 0; i ¼ 1; . . . ; l are the deterministic lin-
ear constraints. The deterministic constraints are related to design
requirements such as structural weight, geometric conditions and
material cost components. The side constraints

fxg 2 X; xi 2 Xi ¼ xijxl
i 6 xi 6 xu

i

� �
; i ¼ 1; . . . ;nd ð2Þ

are included in the definition of the linear deterministic constraints
sið�Þ. The reliability constraints are written in terms of failure prob-
ability functions as

hiðfxgÞ ¼ PFi
ðfxgÞ � P�Fi

6 0; i ¼ 1; . . . ; n; ð3Þ

where PFi
ðxÞ is the failure probability function for the failure event

Fi evaluated at the design fxg, and P�Fi
is the target failure probabil-

ity for the ith failure event. The failure probability function PFi
ðfxgÞ

evaluated at the design fxg can be written in terms of the probabil-
ity integral

PFi
ðfxgÞ ¼

Z
XFi

f ðfzg=fxgÞdfzg; ð4Þ

where fzg 2 Xfzg � Rnu is the vector of uncertain variables involved
in the problem, f ðfzg=fxgÞ is the probability density function of fzg
conditioned on fxg, and XFi

is the failure domain of failure event Fi

in the Xfzg space. The failure domain XFi
for a given design fxg is de-

fined in terms of the performance function ji as jiðfxg; fzgÞ 6 0,
that is XFi

¼ ffzgjjiðfxg; fzgÞ 6 0g. Recall that fzg is the vector of
random variables that describes all uncertainties involved in the
system (model and loading parameters). That is, the components
of the vector fzg represent the uncertain structural parameters
and the random variables used in the characterization of the sto-
chastic excitation. Therefore, the failure probability functions
PFi
ðfxgÞ; i ¼ 1; . . . ;n account for the uncertainty in the system

parameters as well as the uncertainties in the excitation. Finally,
it is assumed that ji is a continuous function with respect to the de-
sign variables fxg.

2.2. Application to dynamical systems

For systems under stochastic excitation the probability that de-
sign conditions are satisfied within a particular reference period
provides a useful reliability measure. Such measure is referred as
the first excursion probability. In this case the failure events
Fi; i ¼ 1; . . . ;n are defined as

Fiðfxg; fzgÞ ¼ Diðfxg; fzgÞ > 1; ð5Þ

where

Diðfxg; fzgÞ ¼ max
j¼1;...;nj

max
t2½0;T�

ri
jðt; fxg; fzgÞ
��� ���

ri�
j

ð6Þ

is the normalized demand, ½0; T� is the time interval,
ri

jðt; fxg; fzgÞ; j ¼ 1; . . . ;nj are the response functions associated
with the failure event i, and ri�

j is the corresponding critical thresh-
old level. In this context the quotient ri

jðt; fxg; fzgÞ
��� ���=ri�

j is inter-
preted as a demand to capacity ratio, as it compares the value of
the response ri

jðt; fxg; fzgÞ with the maximum allowable value of
this response ri�

j . The response functions ri
jðt; fxg; fzgÞ; i ¼ 1; . . . ;

n; j ¼ 1; . . . ;nj are obtained from the solution of the equation of
motion that characterizes the structural model. With the previous
definition of normalized demand, the performance function can
be written as

jiðfxg; fzgÞ ¼ 1� Diðfxg; fzgÞ ð7Þ

and the corresponding first excursion probability can be expressed
as the multidimensional integral

PFi
ðfxgÞ ¼

Z
jiðfxg;fzgÞ60

f ðfzg=fxgÞdfzg: ð8Þ

It is noted that the normalized demand function and the perfor-
mance function are in general non-smooth and therefore non-dif-
ferentiable [18]. However, the differentiability of these functions
is not required in the present formulation (see Section 4.2). It is
also noted that the multidimensional probability integral (8) in-
volves a large number of uncertain parameters (hundreds or thou-
sands) in the context of dynamical systems under stochastic
excitation. Therefore, Eq. (8) represents a high-dimensional reli-
ability problem.
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