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a b s t r a c t

Despite developments over the past 30 years, SPH and other mesh-free computational methods are not
yet in general use as standard tools in dynamic structural mechanics. One possible reason for this is the
use of features such as artificial viscosity, to stabilize the numerical computations, which can result in
physically unreal phenomena. The effect of artificial viscosity in SPH computations is examined and a
heuristic acceleration correction algorithm is proposed in this paper. The purpose is to improve the mod-
elling of physically real effects and thereby make SPH a more attractive modelling option, particularly for
structural impact problems.

The essence of the proposed method is to calculate the change in the acceleration due to the artificial
viscosity term and then correct the computed acceleration by subtracting a kernel approximation of its
artificial counterpart. The energy equation is also modified accordingly. By this means, the excessive dis-
sipation is removed, while retaining the computational stabilizing effect of the artificial viscosity. For
illustrative purposes, the proposed method is applied to several classical elastic and elastic–plastic
impact problems and the results are compared with those available in the literature. In the process,
the improved performance of the proposed algorithm vis-à-vis the standard SPH procedures is discussed
as are the outstanding mathematical issues which require resolution to make the approach truly rigorous.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Smooth Particle Hydrodynamics [16,6,18,20] is one of the oldest
and probably the simplest of mesh-free methods. It is a grid-less
Lagrangian technique, developed initially to deal with mathemati-
cal models of astrophysical and cosmological phenomena. SPH has
been successfully applied to a wide range of problems in computa-
tional fluid dynamics [3] and has been extended to problems in
solid mechanics by Libersky and Petschek [14] and Libersky et al.
[15]. In demonstrating the value of the acceleration algorithm
herein, we have followed the developments of Libersky and Pet-
schek [14] closely.

Recently SPH has found considerable appeal amongst research-
ers for the numerical modelling of high velocity impact and pene-
tration problems (e.g. [10,17]). Due to its particle nature, SPH is
particularly very effective for modelling fragmentation and mate-
rial separation caused by the formation of cracks and crack systems
and the coalescence of a multitude of small crack-like flaws [1],
which are major physical phenomena encountered in several areas
of impact mechanics. These are not dealt with easily by other
methods, e.g. FEM.

However, the method is not yet in general use as a standard tool
in dynamic structural mechanics due to some inherent computa-
tional difficulties. These include the use of the artificial viscosity
[22] to promote numerical stability, perhaps one of the major
problems. In artificial viscosity formulations, an ‘artificial pressure’
term is added into the momentum and energy equations whenever
the system experiences any shock compression. The most basic
physical property that artificial viscosity generates is dissipation,
i.e. it converts kinetic energy to internal energy. However, one
has to be careful when choosing the artificial viscosity parameters
that it does not induce any false pressure, which may lead to an
excessive loss of kinetic energy, making the system over-dissipa-
tive and the predictions correspondingly physically unreal. These
are of particular concern in impact mechanics problems.

Unfortunately, there is no standard procedure for choosing the
artificial viscosity parameters which works for a range of problems.
Most often, the SPH computations are performed with some gener-
ally arbitrarily-prescribed values of these parameters. Johnson [11]
examined the effect of artificial viscosity in impact computations
and showed that the accuracy of SPH computations can be signifi-
cantly affected by the choice of artificial viscosity parameters. One
way out of this difficulty is to perform numerical experiments
(running the simulation with different values of the artificial
viscosity parameters) in order to find the ‘optimum’ values of these
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parameters for a given problem. This is a formidable task when the
size of the problem is large. Therefore an algorithm is needed
which can bypass the requirement of user-defined parameters
and yet controls the effect of artificial viscosity in order to prevent
the system from being over dissipative, whilst still providing the
necessary numerical stability.

In the present paper, an attempt has been made to accomplish
the above objective by developing an acceleration correction algo-
rithm. Herein, the acceleration equations are amended by subtract-
ing a correction term. The correction term is taken as a kernel
approximation of that part of the rate of momentum produced
by the artificial viscosity, using the same kernel function by which
the governing equations are discretized. The energy equation is
also modified accordingly. For illustration, the proposed method
is applied here to two classical elastic and elastic–plastic impact
problems, the collinear impact of two elastic rods and a 2D repre-
sentation of the Taylor bullet impact test. The results are compared
with those available in the literature. The relative numerical
advantages of the new algorithm are brought out in the process.
A third classical problem in structural impact, the Parkes cantilever
problem, is then given to illustrate its potential benefit for a wide
range of structural impact problems.

The formulation of the acceleration correction algorithm pre-
sented below is heuristic, being based on intuition and numerical
observations. Notwithstanding this, we have applied the algorithm
to a series of problems related to impact mechanics and the results
indeed are very encouraging. Although a detailed theoretical anal-
ysis of the proposed algorithm is yet to be produced, its numerical
advantages vis-à-vis SPH models with standard artificial viscosity
shows that the method has the potential to address the issues asso-
ciated with using artificial viscosity in SPH computations.

The paper is organized as follows. In Section 2, the equations of
SPH, as applied to elastic and elastic–plastic dynamics problems,
are outlined. The notion of artificial viscosity is described in Section
3. The proposed correction algorithm is discussed in Section 4. The
three test cases are provided in Section 5 to demonstrate the effi-
cacy of the proposed method. As noted above, one of these is the
Parkes cantilever problem [25], a classical, structural plasticity
problem described in several textbooks and publications in the lit-
erature (e.g. [12,30,28,29,13]). Conclusions are drawn in Section 6.

2. SPH – A brief overview

In smooth particle hydrodynamics (SPH), first the entire do-
main is discretized by defining a set of particles. These particles
interact with each other through a kernel function (sometimes
also called the window or weight function) such that at every par-
ticle the conservation equations are satisfied. There exists exten-
sive literature on SPH addressing different theoretical as well as
numerical aspects [16,18,20]. The objective of this section is to
outline the steps involved in SPH applied to solid mechanics prob-
lems so that a potential reader can transfer the theory into a com-
putational code without further reference to other literature.
However for more comprehensive information, readers are recom-
mended to refer to the review paper by Monaghan [21] and the
references therein.

2.1. Conservation equations

The conservation equations for continuum mechanics are,

dq
dt
¼ �q

@vb

@xb
; ð1Þ

dva

dt
¼ � 1

q
@rab

@xb
; ð2Þ

de
dt
¼ �rab

q
@va

@xb
; and ð3Þ

dxa

dt
¼ va; ð4Þ

where, for any material point, q denotes its mass density, e is the
specific internal energy, va and rab are respectively the elements
of velocity and Cauchy stress tensor, xa is the spatial coordinate
and d

dt is the time derivative taken in the moving Lagrangian frame.
In Eqs. (1)–(4), the effect of heat conduction is neglected assuming
that the deformation process is locally adiabatic.

2.2. Constitutive model

The stress component in Eqs. (2) and (3) may be written in
terms of hydrostatic and deviatoric stresses as Libesky and Pet-
schek [14],

rab ¼ Pdab � Sab; ð5Þ

where P and Sab are respectively the pressure and the components
of the traceless symmetric deviatoric stress tensor. The equations
involved in calculating P and Sab are given in the following sub-
sections.

2.2.1. Pressure
The pressure in Eq. (5) may be calculated through an equation

of state (EOS), which is generally a functional form of two or more
thermodynamical properties (such as temperature, pressure,
volume or internal energy) associated with the physics of the prob-
lem. For solids there is no general EOS that is appropriate for all
materials and circumstances. The Mie–Gruneisen EOS is widely
used in almost all hydrocodes [33]. For a comprehensive descrip-
tion of EOS for solids and other materials one may refer to Elizer
et al. [4]. In this paper two EOS are used.

For elastic problem, pressure is assumed to vary linearly with
compression ratio as,

PðqÞ ¼ K
q
q0
� 1

� �
; ð6Þ

where, K is the bulk modulus and q0 is the initial mass density.
For the elastic–plastic problem, the Mie–Gruneisen EOS [15],

described below, is used.

Pðq; eÞ ¼ 1� 1
2

Cg
� �

PH þ Cqe; ð7Þ

where

PH ¼ a0gþ b0g2 þ c0g3 for g > 0 and PH ¼ a0g3; g < 0; ð8Þ

g ¼ q
q0
� 1

� �
; ð9Þ

a0 ¼ q0C2; ð10Þ
b0 ¼ a0½1þ 2ðS� 1Þ�; ð11Þ
c0 ¼ a0½2ðS� 1Þ þ 3ðS� 1Þ2�: ð12Þ

Here, S and C, respectively, denote the linear shock-velocity and the
particle-velocity parameters to describe the Hugoniot fit and C is
the Gruneisen parameter.

2.2.2. Deviatoric stress
The deviatoric part of the Cauchy stress rate tensor may be writ-

ten as,

_Sab ¼ l _eab � 1
3

dab _ecc
� �

; ð13Þ
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