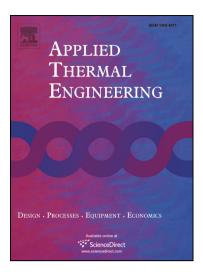
Accepted Manuscript

Investigation on CHF of saturated liquid nitrogen flow boiling in a horizontal small channel

Xiufang Liu, Xingya Chen, Qiaoyu Zhang, Shubei Wang, Yu Hou, Liang Chen


PII: S1359-4311(17)31914-2

DOI: http://dx.doi.org/10.1016/j.applthermaleng.2017.07.018

Reference: ATE 10685

To appear in: Applied Thermal Engineering

Received Date: 22 March 2017 Revised Date: 15 June 2017 Accepted Date: 2 July 2017

Please cite this article as: X. Liu, X. Chen, Q. Zhang, S. Wang, Y. Hou, L. Chen, Investigation on CHF of saturated liquid nitrogen flow boiling in a horizontal small channel, *Applied Thermal Engineering* (2017), doi: http://dx.doi.org/10.1016/j.applthermaleng.2017.07.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Investigation on CHF of saturated liquid nitrogen flow boiling in a horizontal small

channel

Xiufang Liu¹, Xingya Chen¹, Qiaoyu Zhang¹, Shubei Wang², Yu Hou¹, Liang Chen^{1,2,*}

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR

China

Xi'an Jiaotong University Suzhou Academy, Suzhou 215123, P.R. China

*Corresponding author, Email: liangchen@mail.xjtu.edu.cn

ABSTRACT: The critical heat flux (CHF) characteristics of saturated liquid nitrogen flow boiling in

a horizontal small channel are experimentally investigated over a wide range of heat flux, mass flow

flux and inlet pressure. The results show that the departure from nucleate boiling (DNB) type CHF

and the dry-out type CHF dominate the heat transfer separately depending on the vapor quality. The

mass flow flux and the axial position along the channel affect the DNB type CHF, which occurs at

the end of the channel with a vapor quality of 0.4. The higher mass flow flux and inlet pressure

increase the dry-out type CHF as well as the corresponding vapor quality. These two types of CHF

are both significantly affected by the gravity effect. By comparing the dry-out CHF with six existing

correlations, it is found that almost all the correlations overpredict the CHF. This is because the flow

boiling instability is relatively evident in small channels, which leads to the periodical vibration of

the mass flow flux and consequently the earlier dryout in the lower mass flow flux region. In

comparison, Qu and Mudawar's and Zhang's correlations match better with the dry-out type CHF

under the present operating conditions.

Keywords: Liquid nitrogen; Horizontal flow boiling; Small channel; Critical heat flux

1. Introduction

Flow boiling in small channels is receiving increasing attention in many applications such as

high heat flux thermal management, compact heat exchanger and micro-electromechanical system

owing to its unique advantages of excellent heat transfer performance and high compactness [1, 2].

For cryogenic applications including the cooling of high temperature superconductors, cryogenic

surgery apparatus and so on, liquid nitrogen has been widely acknowledged as the optimum working

fluid for its prominent thermophysical property and security [3]. To optimize the compact heat

exchange system, it is of great significance to gain a deep insight into the heat transfer mechanism

1

Download English Version:

https://daneshyari.com/en/article/4991251

Download Persian Version:

https://daneshyari.com/article/4991251

<u>Daneshyari.com</u>