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h i g h l i g h t s

� VRC model can only identify VRF system charge faults at undercharge situation.
� PCA-EWMA method has shortcoming on detecting severe undercharge faults of VRF.
� A refrigerant charge fault diagnosis strategy is proposed based on VRC and PCA-EWMA.
� The proposed hybrid model showed high fault diagnosis accuracy and efficiency.
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a b s t r a c t

The enhancement of fault detection and diagnosis (FDD) strategy for air-conditioning system is always a
complex difficulty. In previous studies, the virtual refrigerant charge (VRC) sensor method and principal
component analysis (PCA) based exponentially-weighted moving average (EWMA) method were pro-
posed to identify refrigerant charge faults for variable refrigerant flow (VRF) systems, respectively.
However, both methods had defects in some cases. On the basis of complementary advantages, this study
employs the VRC model to detect the undercharge faults as it shown outstanding efficiency on identifying
undercharge cases. Similarity, the PCA-EWMA model is used to detect the overcharge faults, since it is
very sensitive to the little variation in the overcharge situations. Further, a novel online refrigerant charge
fault diagnosis strategy is proposed based on two fault detection methods, i.e. VRC method and PCA-
EWMA method. The new hybrid model overcomes the defects of two previous methods appropriately
and well inherits the advantages of both. Finally, the robustness of the proposed refrigerant charge fault
diagnosis strategy is verified using the experimental data and online data collected from different type of
VRF systems.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Variable refrigerant flow (VRF) systems are growing more pop-
ular in the light commercial and commercial buildings. The VRF
market widely distributes in Asia, Europe and South America as
it reached 1.3 million units with a corresponding value of US $
9.7 billion in the world [1]. Moreover, the VRF shared 41.94% of
the Chinese total central air-conditioning market in 2015 [2]. Com-
pared to splits units, windows/through the wall units and indoor
packaged air-conditioning systems etc. the proportion of house-
hold VRF system in the residential buildings is also increasing
rapidly. However, the energy consumption of the air-
conditioning system is non-negligible and worrying since it

accounts for more than 50% of building energy usage [3]. Hence,
numerous researches and techniques were implemented focusing
on improving the VRF performance and reducing its energy
consumption.

Recent development of VRF are mainly focus on experimental
and numerical studies, steady-state or dynamic modeling studies,
advanced control strategy exploitations, etc. [4]. Much of
researches suggested that the VRF system not only has lower
power dissipation than common air conditioning systems (e.g.
variable air volume, fan-coil plus fresh air) under the same condi-
tion, but also provides better indoor thermal comfort [5–7]. How-
ever, in a real case, VRF systems are usually installed in the
unstable indoor/outdoor environment rather than the laboratory
chambers. It is vulnerable to the erosion of the rain and dust, as
well as mechanical damages from the nature or individuals.
Moreover, improper operation, employment or service give rise
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to drastically performance degradation of the system. Therefore, it
is highly possible that the performance would be quite different
from its rated performance after years of operation. To automati-
cally identify possible faults of the VRF system, e.g. refrigerant
undercharge (UC) or overcharge (OC), evaporator/condenser foul-
ing, fan stuck, compressor liquid floodback, temperature/pressure
sensor faults and valve sticking, it is very necessary to develop fault
detection and diagnosis (FDD) techniques for VRF systems. How-
ever, less literatures about the VRF FDD are presented in recent
years.

Previous studies on the VRF FDD are as follows: Kim and Cho [8]
employed a regression method to identify the evaporator air block-
age faults of multi-heat pump system. The algorithm shown good
performance to detect the faults when the multi-units operating
in faulty cases. Shin et al. [9] investigated the heat exchanger foul-
ing faults and valve stuck faults of a multi-split VRF system. Two
model based fault detection strategy were proposed to identify
faults above mentioned. For the VRF refrigerant charge fault detec-
tion and diagnosis, Li et al. [10] found that the traditional physical
model based virtual refrigerant charge sensor (VRC) performed
well at undercharge cases but conducted large prediction errors
at overcharge cases in the VRF system. They employed a data based
method, support vector regression (SVR), to improve the perfor-

mance of the VRC for the overcharge situations. The SVR-VRC
method promoted the VRC models and extended the application
in the VRF system. However, the prediction results of the SVR-
VRC were still undesirable in high-level overcharge cases. Liu
et al. [11] proposed a data-driven method to detect the refrigerant
charge faults for VRF system based on principal component analy-
sis (PCA) and exponentially-weighted moving average (EWMA).
The PCA method extracts the residual matrix from the original data
as the input of the EWMA control charts. The fault detection strat-
egy showed good efficiency on detecting overcharge faults and part
of undercharge faults. Unfortunately, it failed to reject the severe
undercharge fault. Liu et al. [12] also employed a data mining
method, classification and regression tree (CART), to diagnosis
the refrigerant charge faults of VRF system. Results showed that
the CART method was sensitive to undercharge faults but failed
to reject overcharge faults. Sun et al. [13] and Shi et al. [14] used
support vector machine (SVM) based method and Bayesian artifi-
cial neural network (ANN) based method to diagnosis the refriger-
ant charge faults for VRF systems, respectively. The importance of
variable number was analyzed in both researches while the pro-
posed methods achieved high fault diagnosis accuracy. However,
as data mining method, both SVM and ANN models had complex
algorithm structure so that they were time-consuming in the train-

Nomenclature

C covariance matrix
CV cumulative proportion of variance
E residual matrix
EXVsubc openness of the electronic expansion valve of subcooler
f compressor operating frequency
FDD fault detection and diagnosis
I compressor current
k principal component number
Kdsh/sc constant characteristic of a given system
Kch empirical constant
Ksc constant related to condenser subcooling
Ksh constant related to evaporator superheat
Ksh/sc empirical constant
Kx/sc constant characteristic of a given system
Kx constant characteristic of a given system
LCL lower control limit
L control limit width
m rows of original observation matrix
Mtotal total refrigerant charge of a given system
Mtotal.rated total refrigerant charge of a given system at rated con-

dition
n columns of original observation matrix, variable num-

ber
NC normal charge
OC overcharge
OEM original equipment manufacturer
P loading matrix
PC principal component
RCL refrigerant charge level
SL severity level
Tcond condensing saturation temperature
Tevap evaporating saturation temperature
Tshell compressor shell temperature
Tsc liquid line subcooling
Tsc.rated liquid line subcooling at rated condition
Tsh suction superheat
Tsh.rated suction superheat at rated condition
Tsh.com.suc compressor suction superheat temperature

Tsubc.out.L liquid refrigerant temperature at the subcooler outlet
pipe

Tsubc.out.V vapor refrigerant temperature at the subcooler outlet
pipe

Taccu.out accumulator outlet pipe temperature
UC undercharge
UCL upper control limit
VRC virtual refrigerant charge
VRF variable refrigerant flow
X original observation matrix
�X principal component matrix
y number of the test observations
ycor number of the correctly detected test observations
z total number of test data
zc total number of specified category data
zcor number of test data correctly classified
zcor.c number of specified category data correctly classified.
Z EWMA value

Greek symbols
c EWMA weight factor
k1, . . ., kn Eigenvalues
d correctly detected ratio
h classification accuracy
e classification sensitivity

Subscripts
accu accumulator
cond condenser
dsh discharge superheat of compressor
evap evaporator
in inlet
out outlet
sc subcooling
sh superheat
shell compressor shell
subc subcooler
suc compressor suction
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