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Abstract—For an open cyber ecosystem, system elements will 
face the complexity and uncertainty to satisfy collective 
security defense. In the paper, a novel susceptible-infected-
removed-susceptible (SIRS) model is proposed based on an 
open cyber ecosystem. More specifically, the factors of node 
increasing and decreasing are introduced to the traditional 
SIRS model, and system dynamics equations are derived. Via a 
Routh-Hurwitz stability criterion, the stability conditions and 
requirements are further analyzed. Theoretical analysis and 
simulations results show that SIRS epidemic spreading in an 
open cyber ecosystem can be well controlled by modulating the 
number of nodes in case of node increasing and decreasing. 
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I.  INTRODUCTION 
A cyber ecosystem comprises a variety of diverse 

participants, the government, private firms, institutions, 
individuals, and cyber devices that interact for multiple 
purposes [1]. In reality, such a cyber ecosystem is a complex 
but open system. In the cyber ecosystem, nodes increasing 
and decreasing dynamically, the requirements of the cyber 
reconnaissance, attack, and defense will be satisfied. Then 
the process will unavoidably affect traditional SIRS model, 
and cyber ecosystem collective security defense. In previous 
research, achievements are mostly concentrated on close 
cyber environment, for example, dynamics of n impulsive 
delay and variable coefficients in a susceptible-infected (SI) 
model [2], the stability and bifurcation of epidemic spreading 
in a susceptible-infected-susceptible (SIS) model [3], the 
maximum of infective ability and minimum of network 
degree on susceptible-infected-removed (SIR) model [4], the 
dynamic evolution and influence factors in a susceptible-
infected-removed-susceptible (SIRS) model [5-6]. However, 
a cyber ecosystem is essentially a dynamical and open 
complex system, and the number of cyber nodes increasing 
and decreasing is not constant [7]. With the development of 
cyber ecosystem, there are series of variety about 
characteristics of locally and globally in cyber ecosystem. 

In the paper, a novel SIRS model is presented based on 
an open cyber ecosystem. In part , the SIRS model is 
established, and system dynamics equations are proposed. In 
part , the stability of the system is studied. Finally, 
simulations are given in part . 

II. SIRS MODEL 
In an open cyber ecosystem, cyber nodes increasing and 

decreasing are the reflection and representation. Some cyber 
nodes are eliminated naturally, or dilapidated by the factors 

of environment, human, and epidemic attack [1, 7], and thus 
new cyber nodes with special functions may be 
employed/increased to maintain the capability and dynamical 
balance of cyber ecosystem. In some cases, cyber nodes that 
have special function and assignments will be increased and 
decreased to satisfy new missions and designed capabilities 
in the process of cyber operation [8]. 

Based on traditional SIRS model and the mechanism of 
open cyber ecosystem, a novel model is presented and shown 
in Fig.1. 

 
Figure 1.  Novel SIRS model based on open network system 

In Fig.1, A  is denoted the number of cyber node 
increasing, and Sd , Id , Rd  are respectively the elimination 
rates of susceptible nodes, infected nodes, and removed 
nodes. The parameter β , is the rate of nodes contact with 
cyber epidemic, α  is the rate of the capability of 
antiepidemic, ω  is the rate of the capability of antiepidemic 
is decreased, and k  is the cyber degree. 

Therefore the corresponding system dynamics equations 
for the model can be given as: 
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In Eq. (1), at the time t , ( )S t  is the number of 
susceptible nodes, ( )I t  is the number of infected nodes, 

( )R t  is the number of removed nodes, N  is the total 
number of network nodes, ( ) ( )k S t I t Nβ  is the rate of 
susceptible nodes that suffered from epidemics infected [5]. 

Assumed that the environment is the same with its 
influence in local area cyber ecosystem and randomly 
mutilation, elimination rates of nodes in different state are 
the same, i.e. S I Rd d d d= = = . 
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III. STABILITY ANALYSIS 

To solve the balance point about Eq. (1), let ( ) 0dS t
dt

= , 

( ) 0dI t
dt

= , ( ) 0dR t
dt

= . One balance point of Eq. (1) can be 

obtained as:  
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And another balance point is 
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In Eq. (3), 1
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only if 0 1R ≥ , Eq. (1) only has disease-free equilibrium 
point 0P , and if and only if 0 1R < , Eq. (1) only has endemic 
equilibrium point 1P . Jacobian matrix of the random 
equilibrium point P∗  can be calculated: 
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Theorem 1  If 0 1R ≥ , disease-free equilibrium point 0P  
is locally asymptotically stable, and if 0 1R < , disease-free 
equilibrium point 0P  is unstable. 

Proof  Due to Eq. (4), Jacobian matrix of disease-free 
equilibrium point 0P  can be calculated: 
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Eigenvalue determinant of 0( )J P  is: 
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Let 0( ) 0I J Pλ − = , eigenvalue polynomial of 0( )J P  is: 
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Three latent roots of Eq. (7) are 1 dλ = − , 2 ( )dλ ω= − + , 

and 3 ( )k A Nd d Ndλ β α= − + . If 0 1R ≥ , three 
eigenvalues of Eq. (7) are less than zero, and then disease-
free equilibrium point 0P is locally asymptotically stable. 
And if 0 1R < , one of eigenvalues 3 0λ > , there is one 
eigenvalue of Eq. (7) is more than zero, so disease-free 
equilibrium point 0P is unstable. 

As shown in Proof 1, in cyber operation, when infection 
capability of cyber epidemic doesn’t reach the cyber security 
guard threshold, cyber security is an advantage, epidemic 
always dies out, and there are no inflected nodes. 

Theorem 2  If  0 1R < , the endemic equilibrium point 
1P is locally asymptotically stable. 

Proof  Jacobian matrix of endemic equilibrium point 1P : 
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Eigenvalue determinant of 1( )J P is: 
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When 1( ) 0I J Pλ − = , eigenvalue polynomial of 1( )J P  is: 
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