Accepted Manuscript

Research Paper

In-nozzle Flow Investigation of Flash Boiling Fuel Sprays

Shengqi Wu, Min Xu, David L.S. Hung, Hujie Pan

PII: S1359-4311(16)34344-7

DOI: http://dx.doi.org/10.1016/j.applthermaleng.2016.12.105

Reference: ATE 9725

To appear in: Applied Thermal Engineering

Received Date: 11 September 2016 Revised Date: 18 December 2016 Accepted Date: 23 December 2016

Please cite this article as: S. Wu, M. Xu, D. L.S. Hung, H. Pan, In-nozzle Flow Investigation of Flash Boiling Fuel Sprays, *Applied Thermal Engineering* (2016), doi: http://dx.doi.org/10.1016/j.applthermaleng.2016.12.105

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

In-nozzle Flow Investigation of Flash Boiling Fuel Sprays

Shengqi Wu¹, Min Xu¹*, David L. S. Hung^{1, 2}, Hujie Pan¹

1. School of Mechanical Engineering, Shanghai Jiao Tong University, National Engineering Laboratory of Electronic

Control Technology, Shanghai, 200240, China.

2. University of Michigan-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China

*Corresponding author: mxu@sjtu.edu.cn

Abstract

It is widely recognized that a well atomized spray promotes the fuel evaporation in engine cylinder and

contributes to higher fuel efficiency and lower exhaust emission. Specifically, higher fuel temperature enhances

the fuel spray evaporation due to the superheat phenomenon even at low injection pressure. In this study, both

internal flow and near nozzle fuel jet of a two-dimensional transparent nozzle were investigated using high-speed

backlit imaging technique to acquire a better understanding of the primary breakup process of flash boiling sprays.

The two-dimensional slit transparent nozzle was designed to facilitate the enhanced visualization of bubbles inside

the nozzle by squeezing small bubbles and eliminating overlapping bubbles. The ambient pressure ranged from 40

kPa to 190 kPa, and fuel temperature varied from 41 °C to 71 °C, to produce a wide range of superheated

conditions. N-pentane was chosen as test fluid with an injection pressure was 0.5 MPa. Experimental results show

that the bubbles occurring inside the nozzle near the nozzle exit under flash boiling conditions affect the shape

and dynamic behavior of near nozzle fuel jet. It shows that higher fuel temperature and lower ambient pressure

increase the inner bubble size and volume fraction, which led to narrower liquid core of near nozzle fuel jet. Inner

bubbles facilitate the breakup process of fuel jet significantly. The breakup process of flash boiling spray can be

elucidated with more fundamental understanding of bubble behavior inside the nozzle.

Keywords: Flash boiling spray, 2D transparent nozzle, internal flow, jet breakup.

1/22

Download English Version:

https://daneshyari.com/en/article/4991555

Download Persian Version:

 $\underline{https://daneshyari.com/article/4991555}$

Daneshyari.com