
Accepted Manuscript

Research Paper

Experimental and Numerical Investigation on Particle Deposition in a Compact Heat Exchanger

S. Baghdar Hosseini, R. Haghighi Khoshkhoo, M. Javadi

PII:	S1359-4311(16)34376-9
DOI:	http://dx.doi.org/10.1016/j.applthermaleng.2016.12.110
Reference:	ATE 9730
To appear in:	Applied Thermal Engineering
Received Date:	28 August 2016
Revised Date:	20 November 2016
Accepted Date:	26 December 2016

Please cite this article as: S. Baghdar Hosseini, R. Haghighi Khoshkhoo, M. Javadi, Experimental and Numerical Investigation on Particle Deposition in a Compact Heat Exchanger, *Applied Thermal Engineering* (2016), doi: http://dx.doi.org/10.1016/j.applthermaleng.2016.12.110

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Experimental and Numerical Investigation on Particle Deposition in a

Compact Heat Exchanger

S. Baghdar Hosseini¹, R. Haghighi Khoshkhoo^{2,*}, M. Javadi³

^{1,2}Department of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran – Iran
³Department of Mechanical Engineering, Quchan University of Advanced Technologies, Quchan-Iran
* Corresponding author E-mail: r haghighi@sbu.ac.ir Telephone No: (+98) 912 564 49 02

Abstract

In this study the effect of particle size on deposition in compact heat exchanger was investigated experimentally and numerically. An experimental setup was designed to visualize particle deposition and measure pressure drop across the exchanger. Numerical study was performed on five fin channels. The flow was modeled by solving Reynolds-Averaged Navier-Stokes (RANS) equations, and particle motions were simulated by discrete particle model (DPM) with UDF to model deposition. Experimental study was performed for particle size over a range from 1 μ m to 4 mm and numerical investigation were done for particle size from 1 μ m to 100 μ m which were placed in A1 particle group of experiment. Experimental results show enhancement of particle deposition; besides, pressure drop rises with increase of particle size up to 50 μ m. Studies show that velocity increase pressure drop and can promote or hinder particle deposition.

Keywords

Compact heat exchanger, CFD analysis, DPM, Experimental investigation, Particle deposition, Pressure drop

Nomenclature				
C_c	C _c Cunningham correction		Particle velocity	
d	Diameter	V	Volume	
d_{ij}	the deformation tensor	v_{rel}	relative velocity of particle-fluid	
$ec{g}$	gravitational acceleration	X	Position	
k	turbulent kinetic energy Greek Symbols		k Symbols	
k_s	sliding ratio	δ_{ij}	Kronecker delta	
K_B	Boltzmann constant	3	turbulent dissipation	
p	Pressure	ζ_i	zero-mean, unit-variance- independent Gaussian random numbers	

Download English Version:

https://daneshyari.com/en/article/4991612

Download Persian Version:

https://daneshyari.com/article/4991612

Daneshyari.com