Accepted Manuscript

Research Paper

A Numerical study of the transition from slug to annular flow in micro-channel convective boiling

Qingming Liu, Wujun Wang, Björn Palm

PII:	S1359-4311(16)32190-1
DOI:	http://dx.doi.org/10.1016/j.applthermaleng.2016.10.020
Reference:	ATE 9222
To appear in:	Applied Thermal Engineering

Received Date:19 May 2016Revised Date:20 August 2016Accepted Date:6 October 2016

Please cite this article as: Q. Liu, W. Wang, B. Palm, A Numerical study of the transition from slug to annular flow in micro-channel convective boiling, *Applied Thermal Engineering* (2016), doi: http://dx.doi.org/10.1016/j.applthermaleng.2016.10.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Numerical study of the transition from slug to annular flow in micro-channel convective boiling

Qingming Liu^{*}, Wujun Wang, Björn Palm Department of Energy Technology, Royal Institute of Technology, KTH Brinellvägen 68, 100 44-SE, Stockholm, Sweden

Abstract

A numerical study on the transition from slug flow (or elongated flow) to annular flow of convective boiling under high heat flux in a micro-channel with diameter of 0.4 mm is conducted. A constant velocity inlet boundary with mass flux 400kg/m^2 s, and heated wall with a constant heat flux (160, 80kW/m^2) are applied. A novel initialization method is proposed. Growth rate of the bubble and transition of the flow regime are well predicted by comparing with an experimental visualization. Effects of the transition are studied and findings are that this process disturbs thermal boundary layer which further enhances bubble evaporation.

Key words

Boiling, CFD, micro-channels, transition, heat transfer.

	Latin letters		Greek Letters	5
	А	area	α	volume fraction
	С	coefficient	β	constant
	С	specific heat	δ	thickness
	Са	capillary number	θ	contact angle
	D	diameter	μ	viscosity
	F	force	λ	thermal conductivity
	G	mass flux	ρ	density
	h	enthalpy	σ	surface tension
	k	curvature	Φ	level set function
	n	normal vector	0	interface region
	Ν	normalized factor	32	
	L	Length	Subscripts	
	Pr	Prandtl number	b	bubble
	q	heat flux	С	coalescence
	R _{int}	thermal resistance	е	evaporation
ļ	Rg	gas constant	g	gas
	Re	Reynolds number	gr	grid
	S	Source term	int	interface
	Т	temperature	Ι	liquid
	t	time	p	constant pressure
	u	velocity vector	sat	saturation
	X	coordinate	t	tube
	Y	coordinate	ν	vapor
			W	wall

Nomenclature list

* Corresponding author Tel: +46 (0)8 790 7454; Email address: qingming@kth.se Download English Version:

https://daneshyari.com/en/article/4991684

Download Persian Version:

https://daneshyari.com/article/4991684

Daneshyari.com