
Collision in a cross-shaped domain – A steady 2d Navier–Stokes example
demonstrating the importance of mass conservation in CFD

Alexander Linke
Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

a r t i c l e i n f o

Article history:
Received 25 February 2009
Received in revised form 29 May 2009
Accepted 8 June 2009
Available online 30 June 2009

Keywords:
Incompressible Navier–Stokes equations
Mixed finite elements
Poor mass conservation
Numerical instability

a b s t r a c t

In the numerical simulation of the incompressible Navier–Stokes equations different numerical instabil-
ities can occur. While instability in the discrete velocity due to dominant convection and instability in the
discrete pressure due to a vanishing discrete Ladyzhenskaya–Babuska–Brezzi (LBB) constant are well-
known, instability in the discrete velocity due to a poor mass conservation at high Reynolds numbers
sometimes seems to be underestimated. At least, when using conforming Galerkin mixed finite element
methods like the Taylor–Hood element, the classical grad-div stabilization for enhancing discrete mass
conservation is often neglected in practical computations. Though simple academic flow problems show-
ing the importance of mass conservation are well-known, these examples differ from practically relevant
ones, since specially designed force vectors are prescribed. Therefore, we present a simple steady Navier–
Stokes problem in two space dimensions at Reynolds number 1024, a colliding flow in a cross-shaped
domain, where the instability of poor mass conservation is studied in detail and where no force vector
is prescribed.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Classical finite element analysis for mixed approximations of
the incompressible Navier–Stokes equation predicts that at high
Reynolds numbers special care has to be taken, in order to prevent
different numerical instabilities [26]. While instability due to dom-
inant convection is well-known for a long time [23,17,8,26] and
still remains an active area of research in the finite element com-
munity [14–16,3,5–7,11,21,22,18] instability due to poor mass
conservation seems to be often underestimated [24,19]. But simple
academic test examples with a purpose-built force vector (e.g.,
rotation-free) easily show that instability due to poor mass conser-
vation can have dramatic consequences, even at moderate Rey-
nolds numbers [28,24,11,19,9]. Nevertheless, stabilizing poor
mass conservation by the classical grad-div stabilization is not very
popular in practice, since the evolving linear systems become stiff
and the convergence of iterative methods like multi-grid suffers
due to this stabilization operator [24].

In this paper, we present a two-dimensional steady
Navier–Stokes flow in a cross-shaped domain with two inflow
and two outflow channels at Reynolds number 1024. The example
illustrates, under which flow conditions poor mass conservation
becomes a main problem in numerical Navier–Stokes computa-
tions. The example is non-academic in the sense that there is no

artificially constructed right-hand side and the flow is driven only
by reasonable velocity boundary conditions. For a numerical com-
putation with mixed finite element methods the example poses
two problems: first, a large curvature of the pressure develops,
due to collision of the flow in the center of the cross-shaped do-
main. Second, boundary layers near corner singularities evolve,
since the problem is singularly perturbed.

For this flow problem, we compare the approximation quality of
the classical Galerkin Taylor–Hood element ðP2 � P1Þ [12,4], and
the divergence-free Galerkin Scott–Vogelius element ðP2 � P�1Þ
[33,32,30,13,2,25,6,20,19]. In order to prevent instability due to
dominant convection, we resolve the boundary layers by a custom-
ized anisotropic mesh. The chosen sequence of meshes also assures
the Ladyzhenskaya–Babuska–Brezzi (LBB) stability of both mixed
finite element methods [13,2,25]. Then the Galerkin Taylor–Hood
element delivers numerical approximations that are spoiled by
spurious oscillations due to poor mass conservation, while the
divergence-free Galerkin Scott–Vogelius element yields stable
and accurate numerical solutions [19]. The better accuracy of the
Galerkin Scott–Vogelius method is numerically demonstrated by
an investigation of the convergence behavior of both methods with
respect to a reference solution. This superior behavior of the
Scott–Vogelius element is remarkable, since the algebraic space
of discretely divergence-free functions is much larger in the case
of the Taylor–Hood element than in the case of the Scott–Vogelius
element.
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2. The Stokes, Oseen and Navier–Stokes problems

We consider the following system of partial differential equa-
tions for ðu; pÞ in a polygonal domain X � R2.

� mDuþ ðaðuÞ � rÞuþrp ¼ f in X;

r � u ¼ 0 in X;

u ¼ uD on CD; ð1Þ

u � n ¼ 0;
@ðu � tÞ
@n

¼ 0 on CS:

The boundary @X is split in two different parts @X ¼ CD [ CS with
CD \ CS being zero-dimensional. On CD Dirichlet boundary condi-
tions are prescribed, while on CS symmetry boundary conditions
apply. We assume that uD 2 ½CðCDÞ�2 is continuous and can be con-
tinued to a function uB 2 ½H1ðXÞ�2. The continuation can be con-
structed, e.g., by solving the following problem: find uB 2 A, with
the affine trial space

A :¼ fv 2 ½H1�2 : traceCD ðvÞ ¼ uD ^ traceCS ðvÞ � n ¼ 0g

and solve

ðruB;rvÞ ¼ 0

for all v 2 V with

V :¼ fv 2 ½H1�2 : traceCD ðvÞ ¼ 0 ^ traceCS ðvÞ � n ¼ 0g:

Here, ð�; �Þ denotes the L2-scalar product. Further we assume that
m > 0 is a constant and that f 2 ½L2ðXÞ�2 holds.

For the convection term ðaðuÞ � rÞu we will investigate three
different choices

aðuÞ ¼
0; the Stokes problem
a; the Oseen problem
u; the ðnonlinearÞ Navier—Stokes problem:

8><
>:

In the case of the Oseen problem, we assume that the conditions
r � a ¼ 0 and aj@X ¼ uj@X hold and that a is as smooth as u is. Each
of these equations describes the steady distribution of a velocity
field u and a pressure field p in an incompressible fluid. The Stokes
model is applied, when inertial forces are negligible and only fric-
tional forces are important. The Navier–Stokes model is applied,
when both frictional and inertial forces are relevant. The Oseen
model has a rather limited physical meaning. It is a linearized Na-
vier–Stokes problem and often serves as a model problem for a
numerical analysis of the full Navier–Stokes problem.

For a weak formulation of problem (1), we introduce the Sobo-
lev space

Q :¼ L2
0ðXÞ ¼ q 2 L2ðXÞ :

Z
X

qðxÞdx ¼ 0
� �

and the new variable uhom :¼ u� uB. Obviously, for uhom apply
homogenous Dirichlet boundary conditions on CD.

The weak formulation of this problem can be stated in the fol-
lowing saddle point form: find ðuhom; pÞ 2 V � Q ¼: X such that

aðuhom; p;vhom; qÞ þ bðuhom;p;vhom; qÞ þ bðvhom; q;uhom; pÞ
¼ lðvhom; qÞ ð2Þ

for all ðvhom; qÞ 2 X. Here, the forms að�; �Þ : X� X! R; bð�; �Þ :

X� X! R, and l : X! R are defined as

aðuhom; p;vhom; qÞ :¼ mðruhom;rvhomÞ ð3Þ
þ ððaðuB þ uhomÞ � rÞðuB þ uhomÞ;vhomÞ;

bðuhom;p;vhom; qÞ :¼ �ðr � uhom; qÞ; ð4Þ
lðvhom; qÞ :¼ ðf;vhomÞ � mðruB;rvhomÞ þ ðr � uB; qÞ

for all ðuhom;pÞ; ðvhom; qÞ 2 X. The form bð�; �Þ is bilinear and
bounded, lð�Þ is linear and bounded, and að�; �Þ is linear in the second
argument.

In the linear Stokes and Oseen cases the problem can be simpli-
fied further. In the Stokes problem the term aðuÞ drops out, and the
form að�; �Þ is actually bilinear and bounded. In the Oseen case by
moving one term to the right-hand side, we introduce the slightly
modified forms

aOseenðuhom;p;vhom;qÞ :¼mðruhom;rvhomÞþðða �rÞuhom;vhomÞ; ð5Þ
lOseenðvhom;qÞ :¼ðf;vhomÞ�mðruB;rvhomÞþðr�uB;qÞ

�ðða �rÞuB;vhomÞ

for all ðuhom; pÞ; ðvhom; qÞ 2 X, and we must solve the problem: find
ðuhom; pÞ 2 X such that

aOseenðuhom;p;vhom; qÞ þ bðuhom;p;vhom; qÞ þ bðvhom; q;uhom; pÞ
¼ lOseenðvhom; qÞ ð6Þ

holds for all ðvhom; qÞ 2 X. The form aOseenð�; �Þ is bilinear and
bounded. Then an existence and uniqueness theory for the Stokes
and Oseen problem is straight-forward. We define the space of
divergence-free, weakly differentiable vector functions

V0 :¼ fv 2 V : ðr � v; qÞ ¼ 0 for all q 2 Qg; ð7Þ

and the bilinear forms að�;0; �;0Þ and aOseenð�;0; �;0Þ restricted to the
product space V0 � V0 are coercive, due to r � a ¼ 0. The existence
of the pressure p is guaranteed by the Ladyzhenskaja condition,
i.e., on the considered domain X it holds that for all q 2 Q there is
a velocity v 2 V with r � v ¼ q such that

krvk0 6 Ckpk0;

with a constant C only depending on the shape of X, see [12].
The existence theory for the steady Navier–Stokes problem is

more involved and needs the application of the theory of pseudo-
monotone operators, see Ref. [27]. Then uniqueness can be ex-
pected a priori only for large values of m, i.e., m ¼ Oð1Þ.

Below we will present a two-dimensional Navier–Stokes prob-
lem with f � 0, demonstrating the importance of mass conserva-
tion in numerical approximations of the Navier–Stokes equation.
Then the flow is driven only by the inhomogeneous Dirichlet
boundary conditions, and the rotation-free part of the convection
term ðu � rÞu arises as a source of a numerical instability. This
numerical instability will be illustrated by theoretical consider-
ations concerning an appropriate Stokes model problem with
homogeneous Dirichlet boundary conditions and non-zero right-
hand side f.

3. Conforming Galerkin mixed finite elements

A conforming Galerkin mixed finite element discretization for
the incompressible Stokes, Oseen or Navier–Stokes equations,
starts directly from the weak formulation in Eq. (2). Applying this
weak formulation, we choose finite-dimensional function spaces
Vh � V and Qh � Q serving as trial and test functions for the weak
formulation in Eq. (2). Here, the term Galerkin means that we use
the same function spaces for trial and test functions, while the
term conforming emphasizes that the discrete spaces Vh and Q h

are really subspaces of V and Q. Since the mathematical nature of
the quantities velocity and pressure in the incompressible Na-
vier–Stokes equation are quite different, the term mixed is applied.

For the discretization of the incompressible Stokes, Oseen and
Navier–Stokes equations, we use the classical Taylor–Hood ele-
ment and the Scott–Vogelius element. Therefore, let Th denote a
triangulation of the domain X without hanging nodes. For each tri-
angle T 2Th, we define

A. Linke / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3278–3286 3279



Download English Version:

https://daneshyari.com/en/article/499178

Download Persian Version:

https://daneshyari.com/article/499178

Daneshyari.com

https://daneshyari.com/en/article/499178
https://daneshyari.com/article/499178
https://daneshyari.com

