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h i g h l i g h t s

� A transient finite element computational model for thermoelectric materials is developed.
� The model can consider temperature dependence of material properties with strong nonlinear thermoelectric coupling.
� A computation code is developed in commercial programming software Matlab.
� Thermal stress analysis can be carried out with the finite element solution of temperature field.
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a b s t r a c t

This paper proposes a finite element model for the determination of time dependent thermoelectric
coupling fields. The model takes into account all thermoelectric effects, including Joule heating,
Thomson effect, Peltier effect and Fourier’s heat conduction. Temperature-dependent material properties
are also taken into account. The method uses the finite element space discretization to obtain a first-order
system of differential equations. The system is solved by employing finite difference scheme to resolve
the time dependent response. A computation code is developed in commercial programming software
Matlab. Once the temperature field is obtained, the thermal stress analysis can be conducted through
standard thermoelasticity or finite element analysis. An equation to evaluate the stress level in the
thermoelectric materials is identified. This is the first finite element scheme to deal with transient and
nonlinear thermoelectric coupling fields in thermoelectric materials.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Because of their capability in converting waste heat directly
into electricity, thermoelectric materials have attracted significant
interests recently [1]. They are often used for power generation
and refrigeration. Thermoelectric material devices have many
significant advantages. For example, they do not have any moving
parts, are portability, do not produce any noise, show good durabil-
ity and high reliability. Under operation conditions, thermoelectric
materials are subjected to thermal gradients, which are produced
by both the temperature difference applied at the hot and cold
ends of the thermoelectric element and the Joule heating due to
the thermoelectric effects.

Recent renaissance of research in thermoelectrics has been
focusing on determining the effective properties of layered

thermoelectric materials [2–5]. Analysis of such type of materials
is considerably more difficult since the thermoelectric properties
of thermoelectric materials are coupling and non-homogeneous.
Although the thermoelectric coupling has been formulated analyt-
ically in the classic books of physics, numerical techniques able to
solve problems with complicated geometries, material behavior
and working conditions are rare. In Ref. [6], a finite element model
has been formulated for the analysis of sensors based on semicon-
ductors. The method considers the potential and fluxes of the ther-
mal field and also of the electron and hole distributions using
thermodynamics of irreversible processes and statistics. Other
examples include that of [7] that analyses the functioning of alu-
minum production using electrolytic cells. The excellent work of
[8] conducts a finite element analysis of nonlinear fully coupled
thermoelectrics.

On the other hand, many engineering materials may operate in
transient heating environments [9–11]. Dynamic characteristics
are extremely important for design and operation of thermoelectric
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coolers (TECs) [12]. The difficulty in continuum analysis of thermo-
electric is due to the nonlinear nature and coupling of electric con-
duction and heat transfer. In addition, for most of semiconductor
materials, Seebeck coefficient, electric conductivity and thermal
conductivity are strongly temperature-dependent. Time depen-
dence of thermoelectric coupling also greatly increases the diffi-
culty of the analysis. All of these challenging issues have not been
sufficiently elucidated in the literature and motivate me to estab-
lish a comprehensive transient finite element method based on
continuum mechanics concept.

The present transient finite element model is used to capture
the dynamic temperature variations in thermoelectric materials
with constant and variable material properties. The paper is orga-
nized as follows. In Section 2, the governing equations of thermo-
electric coupling are given. This is the root of the finite element
formulation. Different forms of the governing equations, which
may satisfy different analysis requirements, will also be given. In
Section 3 the implementation of finite element scheme together
with the solution strategy by using the finite difference in time
domain are outlined. In Section 4, iterative solution procedure for
the steady finite element equation system is presented. Section 5
discusses some simple test cases to show the feasibility of the
approach. These include numerical results for the transient and
steady-state temperature for a thermoelectric element, with and
without considerations of temperature-dependence of the material
properties. Section 6 presents the thermal stress associated with
the temperature change in a typical thermoelectric element. Con-
clusions are drawn in Section 7.

2. Governing equations of thermoelectric coupling

2.1. Thermoelectric coupling equations

Suppose in a coordinate system x (whose components are xi,
where i = 1, 2, 3) there is a thermoelectric body occupying a space
X, which is surrounded by a surface S. The electric and tempera-
ture fields inside the body may vary from point to point, and with
time. Assume the electric potential V(x, t) and the temperature
T(x, t) are continuous functions of the coordinates xi and time t.
The basic law of electric and heat conductions for isotropic
thermoelectric materials may be stated as [8,13,14]

ji ¼ �r @V
@xi

� rs @T
@xi

; ð1aÞ

qi ¼ �rsT @V
@xi

� ðkþ rs2TÞ @T
@xi

: ð1bÞ

These are also known as the constitutive equations, in which, r
is the electric conductivity, k is the heat conductivity, s is the
so-called Seebeck coefficient, ji are the components of the electric
current vector j, oV/oxj are the electric field gradients, qi are the
components of the heat flow vector q and oT/oxj are the tempera-
ture gradients. Hereafter, the summations over the indices i and j
will be assumed when appearing twice in an equation. Because
the body is isotropic, electricity and heat flow in the direction of
the electric potential and temperature gradients.

From the energy balance of the body, the electric and thermal
fluxes are controlled by the following equilibrium equations

�ji;i ¼ 0 ð2aÞ

�qi;i � ji
@V
@xi

¼ qc
@T
@t

ð2bÞ

where q(x) is the mass density, c(x) the specific heat. The constitu-
tive equations can also be written in terms of the electric current
vector. For example, substitution of Eq. (1a) into Eq. (1b) gives:

qi ¼ �k
@T
@xi

þ sTji: ð3Þ

The equilibrium Eqs. (2a) and (2b) can also be converted to

V ;ii þ sT ;ii ¼ 0; kT ;ii þ 1
r
jiji ¼ qc

@T
@t

: ð4Þ

Eqs. (3) and (4) are useful when the electric flux vector is known.
For example, in one-dimensional problem, from (2a) it can be seen
that j should be a constant. In this situation, the solution of Eq. (4)
will be quite straightforward.

2.2. Alternative form of the governing equations

For a more systemic analysis, a generalized electric current vec-
tor J = jT and the symbols D11 ¼ rT , D12 ¼ sD11, D21 ¼ D12 and
D22 ¼ kþ s2D11 will be introduced. By such definitions, the consti-
tutive Eqs. (1a) and (1b) become

Ji ¼ �D11
@V
@xi

� D12
@T
@xi

; ð5aÞ

qi ¼ �D21
@V
@xi

� D22
@T
@xi

: ð5bÞ

where Ji are the components of the vector J. By such operation, the
global matrices of the finite element formulation will be symmetric,
enabling us to use standard numerical method to solve the system
of the finite element equations. With the substitution of Eqs. (5a)
and (5b), the equilibrium Eqs. (2a) and (2b) can be written in terms
of electric potential and temperature:

D11r2V þ D12r2T þ JE ¼ 0; ð6aÞ

D21r2V þ D22r2T þ Qq ¼ qc
@T
@t

; ð6bÞ

where

JE ¼ ji
@T
@xi

; Qq ¼ �ji
@V
@xi

: ð7Þ

It can be seen that the coefficients D11, D12 and D22 are
temperature-dependent. Since thermoelectric materials may work
in relatively large temperature range and temperature gradient,
the materials properties r, k and s may also be temperature-
dependent. As a result, Eqs. (6a) and (6b) are transient, highly
non-linear and fully coupled.

The conduction Eqs. (6a) and (6b) must be solved for prescribed
boundary and initial conditions. The initial condition specifies the
electric potential and temperature distributions at time zero. These
are, Vðxj;0Þ ¼ V0ðxj;0Þ and Tðxj;0Þ ¼ T0ðxj;0Þ. Conduction boundary
conditions take several forms. The frequently encountered condi-
tions are specified surface electric potential and temperature and
specified surface electric and heat fluxes. Therefore, the boundary
conditions are summarized as:

Jini ¼ J; on boundary Sj ð8aÞ
qini ¼ �q; on boundary Sq ð8bÞ
and

V ¼ V ; on boundary SV ð9aÞ
T ¼ T; on boundary ST ð9bÞ
where Sj + SV = Sq + ST = S, S the surface surrounding the thermoelec-
tric body, the over bar represents the known value, ni are compo-
nents of the unit vector n normal to the exterior of S. Eqs. (8)
indicate that on the boundaries Sj and Sq the electric and thermal
fluxes are prescribed, which are positive if they are directed
towards the exterior of the body.
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