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a b s t r a c t

We study Adini’s elements for nonlinear Schrödinger equations (NLS) defined in a square box with peri-
odic boundary conditions. First we transform the time-dependent NLS to a time-independent stationary
state equation, which is a nonlinear eigenvalue problem (NEP). A predictor–corrector continuation
method is exploited to trace solution curves of the NEP. We are concerned with energy levels and super-
fluid densities of the NLS. We analyze superconvergence of the Adini elements for the linear Schrödinger
equation defined in the unit square. The optimal convergence rate Oðh6Þ is obtained for quasiuniform ele-
ments. For uniform rectangular elements, the superconvergence Oðh6þpÞ is obtained for the minimal
eigenvalue, where p ¼ 1 or p ¼ 2. The theoretical analysis is confirmed by the numerical experiments.
Other kinds of high order finite element methods (FEMs) and the superconvergence property are also
investigated for the linear Schrödinger equation. Finally, the Adini elements-continuation method is
exploited to compute energy levels and superfluid densities of a 2D Bose–Einstein condensates (BEC)
in a periodic potential. Numerical results on the ground state as well as the first few excited-state
solutions are reported.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

During the past decade, Bose–Einstein condensates (BEC) in an
optical lattice has been opening up intriguing possibilities for the
study of coherent matter wave in periodic potentials [1–8]. The lat-
tice potential is formed by overlapping two perpendicular optical
standing waves with the BEC, which can be expressed as [7,8]

Uðx; yÞ ¼ U0fcos2ðkxÞ þ cos2ðkyÞ þ 2e1 � e2 cos / cosðkxÞ cosðkyÞg:
ð1:1Þ

Here U0 denotes the maximum potential of a single standing wave,
k ¼ 2p=l is the magnitude of the wave vector of the lattice beams,
with l the wavelength generated by a near-infrared laser diode, e1

and e2 are the polarization vectors of the horizontal and vertical

standing wave laser fields, respectively. The potential depth U0

can be expressed in units of the recoil energy Er ¼ �h2k2
=2m, where

m is the mass of a single atom, e.g., rubidium. The variable /
denotes the time-phase difference between the two standing wave
laser fields [9]. The governing equation for the BEC in a 2D optical
lattice may be described by the nonlinear Schrödinger equation
(NLS) or the Gross–Pitaevskii equation (GPE) [10,11]

iWt ¼ �
1
2

DWþ VðxÞWþ UðxÞWþ ljWj2W; W > 0; x 2 X � R2;

Wðx; tÞ ¼ 0; x 2 oX; t P 0:

ð1:2Þ

Here W ¼ Wðx; tÞ is macroscopic wave function of the BEC with state
variable x ¼ ðx; yÞ, VðxÞ the trapping potential, UðxÞ the lattice po-
tential defined in (1.1), l a constant, and X a bounded domain in
R2 with piecewise smooth boundary oX. For convenience, we as-
sume that X is a square box in this paper.

In [12], Wu and Niu studied superfluidity of a BEC in an optical
lattice in one-dimension. Specifically, the Landau–Zener tunnelling
and dynamical instability were investigated therein. Note that
superflow of a BEC in an optical lattice is represented by a Bloch
wave, a plane wave with periodic modulation of the amplitude.
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In this paper, we are concerned with energy levels and superfluid
densities of a BEC in an optical lattice in two-dimension. The gov-
erning equation is

iWt ¼ �
1
2

DWþ eUðx; yÞWþ ljWj2 �W ¼ 0 in X ¼ ð�p;pÞ2;

Wðx; yÞ ¼ Wðxþ 2p; yÞ ¼ Wðx; yþ 2pÞ;
ð1:3Þ

where eUðx; yÞ ¼ m1cosð x
d1
Þ þ m2cosð y

d2
Þ with di the distance between

neighbor wells, mi are positive constance, i ¼ 1;2. We remark here
that the trapping potential VðxÞ in (1.2) is omitted in (1.3). More-
over, the Dirichlet boundary conditions in (1.2) is replaced by the
periodic boundary conditions in (1.3).

An important invariant of the NLS is the mass conservation con-
straint, or the normalization of the wave functionZ

X
jwðx; tÞj2dx ¼ 1; t P 0: ð1:4Þ

Various numerical methods have been proposed to study quantum
behavior of the BEC, see e.g. [13–16]. By substituting

Wðx; tÞ ¼ e�iktuðxÞ ð1:5Þ

into (1.3), we obtain the nonlinear eigenvalue problem

Fðu; kÞ ¼ �1
2

DuðxÞ � kuðxÞ þ eUðxÞuðxÞ þ ljuðxÞj2uðxÞ ¼ 0 in X;

uðx; yÞ ¼ uðxþ 2p; yÞ ¼ uðx; yþ 2pÞ:
ð1:6Þ

In general the function uðxÞ in (1.5) is a complex function. For sim-
plicity we assume uðxÞ is a real function. Note that (1.6) is a param-
eter-dependent problem which can be solved using numerical
continuation methods. For instance, Chien et al. proposed some
variants of two-grid continuation schemes [17,18] to investigate en-
ergy levels and superfluid densities of rotating BEC [19].

The Schrödinger eigenvalue problem (SEP) associated with (1.6)
is

� 1
2

DuðxÞ � kuðxÞ þ eUðxÞuðxÞ ¼ 0 in X ¼ ð�p;pÞ2;

uðx; yÞ ¼ uðxþ 2p; yÞ ¼ uðx; yþ 2pÞ:
ð1:7Þ

To compute an energy level of the GPE using numerical continua-
tion methods, we may trace the corresponding solution curve
branching from a bifurcation point on the trivial solution curve
fðu; kÞ ¼ ð0; kÞjk 2 Rg of (1.6). We stop the curve-tracking whenever
the constraint,Z

X
juðxÞj2dx ¼ 1 ð1:8Þ

is satisfied. The constraint (1.8) is referred to as a target point on the
solution curve. Note that a bifurcation point of the GPE is just an
eigenvalue of the associated SEP [20], which can be computed using
numerical methods. Our aim is to study high order finite element
methods (FEM) for the GPE. In particular, the Adini element approx-
imations will be incorporated in the context of continuation meth-
ods for curve-tracking. Of particular interest here is the
investigation of superconvergence for the simplified SEP

� 1
2

Du ¼ ku in X ¼ ð�p;pÞ2;

uðx; yÞ ¼ uðxþ 2p; yÞ ¼ uðx; yþ 2pÞ:
ð1:9Þ

For eigenvalue problems of self-adjoint elliptic of differential oper-
ators, the finite element method was studied in Strang and Fix [21]
and in Babus̆ka and Osborn [22], and the error estimates were de-
rived. The eigenvalue problems for algebraic equations and linear
operators were also reported in Wilkinson [23] and Chatelin [24],
respectively. Global superconvergence was developed for elliptic

problems in Chen and Huang [25], Lin and Yan [26] and Yan [27],
and applied for eigenvalue problems in Lin and Lin [28] and Yang
[29]. We will discuss periodic eigenvalue problems given in [30],
and employ the direct constraints in Li [31] to deal with periodic
boundary conditions. Moreover, high order FEMs, such as Adini’s
elements, bi-quadratic and kth-order triangular elements, are cho-
sen. We analyze superconvergence and derive new error bounds
for high order FEMs.

In this paper we also give some numerical results of the Adini
elements for the simplified SEP with different boundary conditions,
i.e., Dirichlet, Neumann, periodic, and the Robin boundary
conditions. Adini’s elements are defined on rectangles �ij with
nodal variables, u;ux and uy, at four corners of �ij, and the inter-
polant functions are expressed by polynomials of bP3 ¼ P3þ
spanfx3y; xy3g, where P3 ¼

P3
iþj¼0aijxiyj are cubic polynomials.

Adini’s elements were first studied in Adini and Clough [32] and
Melosh [33]. In some literature, Adini–Clough–Melosh rectangle
is called, see [34]. For simplicity, we call it Adini’s elements in this
paper. Error analysis of Adini’s elements was given in many papers
for the fourth order elliptic problems, e.g., the biharmonic equa-
tions. We only mention some of them: Lascaux and Lesaint [35],
Kikuchi [36], and Miyoshi [37] and Ciarlet [34].

From the numerical results we obtain the superclose kuI�
uhk0 ¼ Oðh5Þ and kuI � uhk1 ¼ Oðh4Þ for the uniform rectangles �ij,
where uI is Adini’s interpolant based on the true solution u, and
uh the approximation solution for Adini’s elements. By the a poste-
riori interpolant we get the global superconvergence Oðh5Þ and
Oðh4Þ in L2 norm and H1 norm, respectively. Furthermore, we also
obtain the convergence rate Oðh6Þ of the minimal eigenvalue and
the superconvergence Oðh8Þ by the Rayleigh quotient based on
the a posteriori interpolant in Yang [29]. Moreover, we can obtain
higher accuracy and convergence rates by the extrapolation formu-
las based on the approximate eigenvalues.

This paper is organized as follows. In the next section, the linear
eigenvalue problem (LEP) with Dirichlet and Neumann boundary
conditions involving periodic boundary conditions is described,
which are denoted by Models I and II, respectively. In Section 3,
the Adini elements are employed for the LEP with Models I and
II. In Section 4, superconvergence of Adini’s elements by direct con-
straints is derived for Poisson’s equation with Models I and II. In
Section 5, the superconvergence is developed for LEP. In Section
6, the superconvergence is applied to other FEMs for Models I
and II. In Section 7, numerical results are reported to support our
theoretical analysis. Moreover, the ground state solutions as well
as the first few excited-state solution of (1.6) are presented. Finally,
some concluding remarks are given in Section 8.

2. Periodic boundary conditions

For convenience we rewrite (1.9) as

� Du ¼ ku in S ¼ ð0;1Þ2; ð2:1Þ
uþ ¼ u�; uþn ¼ u�n on Cþ; ð2:2Þ

where C ¼ oS ¼ Cþ [ C�, Cþ ¼ BD [ CD, C� ¼ AB [ AC, and u� ¼ ujC�
(see Fig. 1). In (2.2), we impose the normal derivative un (ux ¼ ou

ox or
uy ¼ ou

oy) on oS as shown in Fig. 1. because of finite element approx-
imations. The simplified notations in (2.2) denote

uþðx;1Þ ¼ u�ðx;0Þ; uþð1; yÞ ¼ u�ð0; yÞ ð2:3Þ

and

uþy ðx;1Þ ¼ u�y ðx;0Þ; uþx ð1; yÞ ¼ u�x ð0; yÞ: ð2:4Þ

Obviously, k ¼ 0 is the minimal eigenvalue of (2.1) and (2.2) with
corresponding eigenfunction, u � constant. We are interested in
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