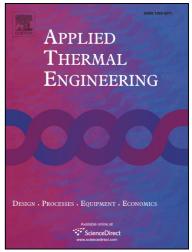
Accepted Manuscript


Accepted Date:

Measurement of Thermal diffusivity/Thermal Contact Resistance Using Laser Photothermal Method at Cryogenic Temperatures

Bi Dongmei, Chen Huanxin, Liu Shanjian, Shen Limei

28 July 2016

PII:	\$1359-4311(16)31332-1
DOI:	http://dx.doi.org/10.1016/j.applthermaleng.2016.07.188
Reference:	ATE 8786
To appear in:	Applied Thermal Engineering
Received Date:	21 April 2016
Revised Date:	28 July 2016

Please cite this article as: B. Dongmei, C. Huanxin, L. Shanjian, S. Limei, Measurement of Thermal diffusivity/ Thermal Contact Resistance Using Laser Photothermal Method at Cryogenic Temperatures, *Applied Thermal Engineering* (2016), doi: http://dx.doi.org/10.1016/j.applthermaleng.2016.07.188

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Measurement of Thermal diffusivity/Thermal Contact Resistance Using Laser

Photothermal Method at Cryogenic Temperatures

Bi Dongmei^{a*}, Chen Huanxin^b, Liu Shanjian^a, Shen Limei^b

^a School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
^b School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, China^l

ARTICLE INFO	ABSTRACT
Article history:	The Laser Photothermal Method (LPM), which is a transient non-contact
Received	technique, was employed to measure the thermal physical parameters of Stainless
Received in revised form	Steel 304 (SS304), Oxygen-Free Copper (OFC) and Aluminum Nitride (AlN)
Accepted	ceramics. The thermal diffusivity of SS304, OFC and AlN ceramic were
Keywords:	measured by the LPM and some explanations for the tendency with the
Laser Photothermal Method	temperature were given. Compared with the reference values, it showed that the
Thermal diffusivity	LPM is reliable in measuring thermal parameters. Following, the thermal contact
Thermal Contact Resistance	resistances (TCRs) of OFC-AlN ceramic, SS304-AlN, SS304-SS304 and AlN
Emprical formula	ceramic were measured in the temperature range from 70 K to 300 K and the
	contact pressure was on the order of 0.10 MPa. Some explanations were given to
	make clear the changing trend of TCRs with the increase of temperature.
	Moreover, some empirical formulas of the TCRs were established. The accuracy
	of the establishing empirical formulas had been validated by the experiment, and
	the error was smaller than 9%.

Nomenclature

^{*} Corresponding author. Tel.: 86 05332780092.

E-mail address: dongmei070719@163.com

Download English Version:

https://daneshyari.com/en/article/4992159

Download Persian Version:

https://daneshyari.com/article/4992159

Daneshyari.com