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a b s t r a c t

The stress and displacement models of the hybrid-Trefftz finite element formulation are applied to the
solution of incompressible axisymmetric saturated porous media. The use of a Trefftz approximation
basis ensures that all domain conditions of the problem are satisfied in a strong form, namely the equi-
librium, the constitutive and the strain–displacement relations and the mixture incompressibility condi-
tion. The alternative stress and displacement models are fully complementary in terms of approximation
criteria. The stress (displacement) model is derived from the direct approximation of the stress and pres-
sure fields (the displacements in the solid and fluid phases) in the domain of the element. The displace-
ments of the solid phase and the normal displacement of the fluid phase are approximated independently
on the boundary of the stress element and used to enforce in a weak form the inter-element and bound-
ary equilibrium conditions on the forces in the solid phase and on the fluid pressure. The boundary
approximation used in the displacement element is on the solid surface forces and the fluid pressure,
and is used to enforce on average the inter-element and boundary displacement continuity conditions.
The resulting finite element governing systems are sparse, well-suited to adaptive refinement and paral-
lel processing, and their coefficients are defined by boundary integral expressions. The energy statements
associated with the formulation are recovered and sufficient conditions for the uniqueness of the finite
element solutions are stated. Benchmark tests on hydrated soft tissue modelling are used to assess the
performance of the alternative stress and displacement models of the hybrid-Trefftz formulation.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper closes the report on a study on the modelling of the
response of hydrated soft tissues with hybrid-Trefftz finite ele-
ments [1,2]. It extends to axisymmetric problems the formulation
and implementation of the elements developed for the analysis
of two-dimensional problems [3,5,6], and is used to establish a di-
rect comparative analysis of the alternative stress and displace-
ment models.

The parabolic model proposed in Mow et al. [7] for incompress-
ible biphasic media is adopted here. This model is first discretized
in the time dimension in a format that can accommodate alterna-
tive time integration procedures, namely the trapezoidal rules fre-
quently used in the finite element modelling of the response of soft
tissues, as illustrated in the work reported by Spilker and his co-
workers, e.g., [8] and the spectral decomposition method that is
used here to assess the response of the hybrid-Trefftz elements
in both frequency and time domains [9].

The resulting boundary value problem is discretized next using
a technique in every aspect similar to that applied in the develop-

ment of hybrid and hybrid-Trefftz elements for two-dimensional
problems. Thus, and to avoid unnecessary duplication, the finite
element equations for the alternative displacement and stress
models of the hybrid formulation are stated and their specific roles
are recalled. The hybrid-Trefftz variants are obtained by constrain-
ing the approximation bases to the solution set of the governing
system of differential equations, the distinguishing feature of the
Trefftz approach [10].

The first part of the paper closes with the presentation of the
finite element governing systems. The main aspects of its
numerical implementation are briefly recalled. The associated
energy statements and the sufficient conditions that ensure the
uniqueness of the finite element solutions presented for two-
dimensional problems are here adapted to axisymmetric
problems.

The second part of the paper addresses the assessment of the
performance of the hybrid-Trefftz elements when applied to the
frequency and time domain analyses. The results that are pre-
sented show that the Trefftz elements for hydrated soft tissue
modelling preserve the high performance features that have been
consistently reported on their application to progressively wider
classes of modelling problems since the pioneering work of Jirou-
sek and Leon [11,12].

0045-7825/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2009.02.023

* Corresponding author. Tel.: +351 218418236.
E-mail address: freitas@civil.ist.utl.pt (J.A.T. de Freitas).

Comput. Methods Appl. Mech. Engrg. 198 (2009) 2368–2390

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma

mailto:freitas@civil.ist.utl.pt
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


The spectral analysis tests are used to illustrate the convergence
rates and patterns obtained with p- and h-refinement procedures
and to analyse the sensitivity of the elements to gross shape distor-
tion and to quasi-incompressibility conditions set on each phase of
the mixture. The forcing frequencies used in the spectral analysis
tests are selected to range a wide variation in the relation between
the typical dimension of the element and the wavelength of the
excitation.

A non-periodic spectral decomposition time integration proce-
dure, implemented on a high-order wavelet time approximation
basis, is used to obtain the results obtained for the time domain
analysis tests. It is shown that the coupling of the combination of
the Trefftz approximation in space (implemented on relatively
coarse meshes) with the wavelet approximation in time (applied
in a single time increment) produces adequate estimates for the
stress, pressure and displacement fields, at both local and global
levels and at every instant of the loading process.

2. Boundary value problem

After implementation of the time integration method (see
Appendix A), the equilibrium, compatibility and elasticity condi-
tions in the domain V of a saturated porous element are written
as follows, where x is the forcing (or algorithmic) frequency, i is
the imaginary unit and subscripts s and f identify quantities asso-
ciated with the solid and fluid phases of the mixture:
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Vectors r and e define the independent components of the
stress and strain tensors, p and c are the pressure and the volumet-
ric change of the mixture, and b and u are the body force and dis-
placement vectors, respectively. Vector bo is used to define the
equivalent body forces associated with the initial condition of the
problem, and parameters f, /s and /f define the diffusive drag and
the solid and fluid fraction ratios, with /s + /f = 1. The (linear) dif-
ferential operators, the divergence matrix D and the gradient vec-
tor $, and their conjugates D* and $*, are defined in Appendix B for
axisymmetric problems, as well as the stiffness matrix, k.

Four complementary regions are identified on the boundary of
the element, C, to define the following force and displacement con-
tinuity conditions:

t ¼ Nrs þ /snp ¼ �t on Ct ; ð4Þ
/f p ¼ �p on Cp; ð5Þ
us ¼ �u on Cu; ð6Þ
ntuf ¼ �w on Cw: ð7Þ

In the Neumann boundary conditions (4) and (5), �p is the pres-
sure prescribed on the fluid and matrix N collects the components
of the unit outward normal vector, n, that establish the equilibrium
conditions on stress and prescribed force, �t, components. In the
Dirichlet conditions (6) and (7), vector �u defines the displacements
prescribed on the solid matrix and �w is the outward normal com-
ponent of the displacement in the fluid.

Eqs. (4)–(7), which can be written to account for mixed bound-
ary conditions, hold for inter-element continuity conditions, in
which case the prescribed term defines the displacements and/or
the forces applied to the interfaces between connecting elements.
In addition, the elasticity condition (3) can be extended to include
creep and stress relaxation terms.

3. Governing differential equation

Combination of Eqs. (1)–(3) leads to the mixed (Navier–Beltra-
mi) system of equations,
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where e$ is the anti-gradient vector and e$� its conjugate:
$� e$ð�Þ ¼ e$�$ð�Þ ¼ 0. They are defined in Appendix B, where the
P- and S-wavenumbers kp and ks are given in terms of parameter
k2 ¼ fx/�2

f .
The homogeneous system (8) has three sets of solutions,

namely constant pressure (frozen) modes, harmonic pressure
modes and Helmholtz pressure modes. They are defined as follows,

$p ¼ 0; us ¼ $u and uf ¼ us;

with r2u ¼ 0; ð9Þ
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where r2(�)=$*$(�) is the Laplacian and er2ð�Þ ¼ e$� e$ð�Þ its conju-
gate. The potentials are defined in cylindrical and spherical co-ordi-
nate systems in Appendices C and D, respectively [1].

4. Formulations and models

The finite element formulation used here to solve problem (8)
under boundary conditions (4)–(7) is termed hybrid because it in-
volves independent approximations in the domain and on the
boundary of the element, and Trefftz to acknowledge the imple-
mentation of the method proposed by Trefftz [10] to solve bound-
ary value problems as an alternative to the method proposed
earlier by Ritz [13].

Instead of constraining the approximation basis to satisfy in a
strong form the essential boundary conditions and determining
the weights of the basis by enforcing in weak form the remaining
conditions of the problem, the Trefftz method generalizes the clas-
sical, analytical method to solve boundary value problems: the
approximation basis is defined as a linear combination of the solu-
tions of the governing differential equation (8), meaning that all
domain conditions (1)–(3) are satisfied in strong form (the so-
called Trefftz constraint), and the weights of the basis are deter-
mined enforcing the essential boundary conditions in weak form.

Different models are possible for the resulting Ritz or Trefftz
formulation, depending on the choice of the essential boundary
conditions. Two models are derived and tested here, depending
on whether the essential boundary conditions are identified with
the Neumann conditions (4) and (5), as in the stress model, or with
the Dirichlet conditions (6) and (7), as in the displacement model. A
consequence of this option is that the stress (displacement) model
may produce, under certain conditions, statically (kinematically)
admissible solutions, that is, solutions that satisfy in strong form
the domain and boundary equilibrium (compatibility) conditions
of the problem.

In order to control the enforcement of the continuity conditions
strictly in terms of either forces or displacements, the domain
approximation bases involve fields of the same nature in each
model, namely static variables (stresses) in the stress model and
kinematic variables (displacements) in the displacement element.
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