
European Journal of Mechanics B/Fluids 65 (2017) 247–256

Contents lists available at ScienceDirect

European Journal of Mechanics B/Fluids

journal homepage: www.elsevier.com/locate/ejmflu

Explicit solutions for a long-wave model with constant vorticity
Benjamin L. Segal a, Daulet Moldabayev b, Henrik Kalisch b,∗, Bernard Deconinck a

a Department of Applied Mathematics, University of Washington, Seattle, WA 98195-2420, USA
b Department of Mathematics, University of Bergen, Postbox 7800, 5020 Bergen, Norway

a r t i c l e i n f o

Article history:
Received 11 October 2016
Received in revised form
26 February 2017
Accepted 18 April 2017
Available online 6 May 2017

Keywords:
Surface waves
Shear flow
Pressure
Streamlines
Exact solutions

a b s t r a c t

Explicit parametric solutions are found for a nonlinear long-wave model describing steady surface waves
propagating on an inviscid fluid of finite depth in the presence of a linear shear current. The exact
solutions, along with an explicit parametric form of the pressure and streamfunction give a complete
description of the shape of the free surface and the flow in the bulk of the fluid. The explicit solutions
are compared to numerical approximations previously given in Ali and Kalisch (2013), and to numerical
approximations of solutions of the full Euler equations in the same situation Teles da Silva and Peregrine
(1988). These comparisons show that the long-wave model yields a fairly accurate approximation of the
surface profile as given by the Euler equations up to moderate waveheights. The fluid pressure and the
flow underneath the surface are also investigated, and it is found that the long-wavemodel admits critical
layer recirculating flow and non-monotone pressure profiles similar to the flow features of the solutions
of the full Euler equations.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Background vorticity can have a significant effect on the prop-
erties of waves at the surface of a fluid [1–10]. In particular, in the
seminal paper of Teles da Silva and Peregrine [11], it was found
that the combination of strong background vorticity and large am-
plitude leads to a number of unusual wave shapes, such as narrow
and peaked waves and overhanging bulbous waves. In the present
contribution, we continue the study of a simplified model equa-
tionwhich admits some of the features found in [11]. The equation,
which has its origins in early work of Benjamin [12], has the form
Q +

ω0

2
u2
2 du

dx

2

= −3

ω2

0

12
u4

+ gu3
− (2R − ω0Q )u2

+ 2Su − Q 2

, (1)

where we denote the volume flux per unit span by Q , the mo-
mentum flux per unit span and unit density corrected for pressure
force by S, and the energy density per unit span by R. The gravita-
tional acceleration is g and the constant vorticity is −ω0. The total
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flow depth as measured from the free surface to the rigid bottom
is given by the function u(x).

Eq. (1) was recently studied in [13]. It was found that solutions
of this equation exhibit similar properties as solutions of the
full Euler equations displayed in [11]. In particular, in [13] an
expression for the pressure was developed, and it was shown that
the pressure may become non-monotone in the case of strong
background vorticity. Indeed, it was shown in [13] that if |ω0|

is big enough, the maximum fluid pressure at the bed is not
located under thewavecrest. Such behavior is usually only found in
transient problems (cf. [14]). Moreover in some cases, the pressure
near the crest of the wave may be below atmospheric pressure. In
contrast, in an irrotational flow beneath a traveling surface water
wave, the pressure is monotone with depth, and no overhanging
profiles are possible [15,16].

The purpose of the present work is two-fold. First, we develop
a method by which Eq. (1) can be solved exactly. The resulting
solutions are compared to the numerical approximations found
in [13] and to some of the solutions of the full Euler equations
from [11]. Secondly, more features of the solutions of (1) are
discussed. Using a similar analysis as in [13], the streamfunction
is constructed, and it is found that solutions of (1) may feature
recirculating flow and pressure inversion. These features may
have an impact on the study of sediment resuspension. Indeed,
while it is generally accepted that the main mechanism for
sediment resuspension is turbulence due to flow separation in the
presence of strong viscous shear stresses [17–19], the strongly
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non-monotone pressure profiles exhibited by the solutions of
(1) may represent a more fundamental mechanism for particle
suspension than the viscous theory. In particular, in Fig. 13 it can be
seen that very strong shear allows for near atmospheric pressure
close to the bed, and there are regions of high pressure situated
below regions of lower pressure leading to an upwardly directed
force in the fluid.

The geometric setup of the problem is explained as follows.
Consider a background shear flow U0 = ω0z, where ω can be
positive or negative (cf. Fig. 1). Superimposed on this background
flow is wave motion at the surface of the fluid. As observed by a
number of authors [12,11,9], a linear shear current can be taken
as a first approximation of more realistic shear flows with more
complex structures.

If it is assumed that the free surface describes a steady
periodic oscillatory pattern, then the flow underneath the free
surface can be uniquely determined [20–22]. In the presence
of vorticity, uniqueness holds under certain conditions, but in
some cases, there is loss of uniqueness, and this allows the
existence of critical layers in the fluid [23]. For the purpose
of studying periodic traveling waves, one may use a reference
frame moving with the wave. This change of reference frame
leads to a stationary problem in the fundamental domain of one
wavelength. The incompressibility guarantees the existence of the
streamfunction ψ and if constant vorticity ω = −ω0 is stipulated,
the streamfunction satisfies the Poisson equation

1ψ = ψxx + ψzz = ω0, in 0 < z < η(x). (2)

As explained in [24,25], the three parametersQ , S and R are defined
as follows. If ψ = 0 on the streamline along the flat bottom, then
Q denotes the total volume flux per unit width given by

Q =

 η

0
ψzdz. (3)

Thus Q is the value of the streamfunctionψ at the free surface. The
flow force per unit width S is defined by

S =

 η

0


P
ρ

+ ψ2
z


dz, (4)

and the energy per unit mass is given by

R =
1
2
ψ2

z +
1
2
ψ2

x + gη on z = η(x). (5)

Finally, the pressure can be expressed as

P = ρ

R − gz −

1
2
(ψ2

x + ψ2
z )+ ω0ψ − ω0Q


. (6)

It is well known that the quantities Q and S do not depend on
the value of x [24]. Using the fact that S is a constant, the derivation
of the model equation (1) can be effected by assuming that the
waves are long, scaling z by the undisturbed depth h0, x by a typical
wavelength L, and expanding in the small parameter β = h2

0/L
2.

This yields (1) as an approximate model equation describing the
shape of the free surface. In order to distinguish from the free
surface η in the full Euler description, we call the unknown of
Eq. (1) u which is an approximation of η. The derivation of (1)
was given in [24], where it was shown that (1) is expected to be
valid as an approximate model equation describing waves on the
surface of the shear flow if the wavelength is long compared to
the undisturbed depth of the fluid. On the other hand, a detailed
analysis of the derivation explained in [24] shows that there are
no assumptions on the amplitude of the waves. Thus at least
formally, the model (1) can be expected to describe waves of large
amplitude.

2. Explicit solutions

In order to obtain solutions of (1) given in explicit form, we
apply the change of variables
dy
ds

=
du
dx


Q +

ω0

2
u2

, y(s) = u(x).

This gives us a new equation for y(s) in the form
dy
ds

2

= −3

ω2

0

12
y4 + gy3 − (2R − ω0Q )y2 + 2Sy − Q 2


, (7)

and the relation
ds
dx

=
1

Q + y2ω0/2
. (8)

Integrating (8) we have

x(s) =

 s 
Q +

ω0

2
y2

dξ − x1 (9)

where x1 is a constant of integration, written explicitly for
convenience. We want to solve (7) for y(s) and plug our
solution into (9). We notice that in the variables y and dy

ds the
equation describes an elliptic curve of genus one [26]. Hermite’s
Theorem [27, p. 394] states that for a uniform solution to exist
we need


ds to be an abelian integral of the first kind. This

condition is indeed satisfied andweproceedwith using a birational
transformation to put (7) in the standard Weierstraß form

dy0
dx0

2

= 4y30 − g2y0 − g3, (10)

where the transformation is given in Box I, and g2 and g3 are the
lattice invariants

g2 = −768QRω0 + 768R2
− 1152Sg,

g3 = 2048Q 3ω3
0 − 6144Q 2Rω2

0 − 6912Q 2g2
+ 6144QR2ω0

− 4608QSgω0 + 2034S2ω2
0 − 4096R3

+ 9216RSg.

It is well known that the solution to (10) is y0(x0) = ℘(x0 +

c0; g2, g3), where ℘ is the Weierstraß P function and c0 is an
arbitrary constant [28,26]. We invert the birational transformation
to determine the exact solution to (7) as

y(s) =
A + B℘ ′((s + c0)/4; g2, g3)+ C℘((s + c0)/4; g2, g3)
℘2((s + c0)/4; g2, g3)+ D℘((s + c0)/4; g2, g3)+ E

,

with

A = −288Q 2g − 96Qω0S + 192RS, B =
√
12Q ,

C = −24S,
D = 8Qω0 − 16R, E = 64Q 2ω2

0 − 64QRω0 + 64R2.

This gives u(x(s)) in the form

u(x(s))

=
A + B℘ ′((s + c0)/4; g2, g3)+ C℘((s + c0)/4; g2, g3)
℘2((s + c0)/4; g2, g3)+ D℘((s + c0)/4; g2, g3)+ E

, (12)

as a function of the parameter s. If we express x(s) as a function of
s, then we have a parametric representation for u(x), the surface
elevation. From (9) we have

x(s) = Qs − x1 +
ω0

2

 s

y2(ξ)dξ . (13)

Expanding and simplifying y(s)2 gives

y2 =
4B℘3

+ C2℘2
+ (2AC − B2g2)℘ + (A2

− B2g3)
(℘2 + D℘ + E)2

+
2AB − 2BC℘

(℘2 + D℘ + E)2
℘ ′, (14)
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