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a b s t r a c t

In the present work, the drag force on a fluid sphere surrounded by a second is determined. This
information is essential to characterize dispersed flows. Most of two-phase flow models are empirically
obtained from experiments involving isolated bubbles or droplets. Their applicability to flowswith a high
number of bubbles or droplets is questionable. Moreover, correlations that take into account the effect of
local dispersed phase fraction, the ratio of occupied volume by the dispersed phase, are sparse.

This paper explores the drag on a fluid sphere inside an idealized flow. All spheres are assumed
identical having the same velocity and equidistributed in space. We propose a new relation for the drag
coefficient of a sphere (bubbles or droplets) depending on Reynolds number Re, dispersed phase fraction
ε, viscosity ratio µ∗ and density ratio ρ∗. Analytical and numerical results are compared with previous
studies including experimental measurements. The results lead to a proposal for a general relation of the
drag coefficient for a sphere inside a cloud of spheres.

In the idealized bubbly/droplet flow considered, the slip ratio is very small, and the flow around a
sphere can often be characterized by Stokes approximation. In addition, dispersed phase fraction, ε, has a
strong effect on drag essentially through confinement. Thewake and hydrodynamic interactions between
spheres are comparatively small. The proposed relation can be used to elaborate a two-phase flowmodel
for bubbly or annular flows. This work proposes an improvement on the closure relations for the drag
coefficient (CD).

The dependence of the drag coefficient (CD) with void fraction is of utmost importance to evaluate the
stability of two-phase flows. The drag coefficient is a source term of the averaged Navier–Stokes equation.

The main conclusion is that dispersed phase fraction extends the range for which Stokes flow
represents accurately the flow around bubbles/droplets.

© 2017 Elsevier Masson SAS. All rights reserved.

0. Introduction

In the nuclear, hydroelectric and chemical process industries,
50% of components and piping elements operate with two-phase
flows [1]. In order to evaluate the forces induced by two-phase
flow, it is desirable to identify the parameters that govern the flow.
For two-phase flow, each phase interacts with the other phase
through interfacial forces. In the present paper, we propose to
investigate one of the interfacial forces: the drag of a sphere inside
a two-phase flow.

This information is essential to characterize finely dispersed
bubbly flows, where small spherical gas bubbles are present in a
continuous liquid phase. It is also useful to model annular flow, for
which spherical droplets are dispersed in a continuous gas phase.
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Using either Euler–Euler or Euler–Lagrange models some au-
thors use the widely accepted closure correlations proposed by
Tomiyama et al. [2,3]. As underlined by Darmana et al. most of
the closures are empirically obtained from experiments involving
single bubbles or droplets [4]. Their applicability to systems with
high dispersed phase fraction is questionable. Moreover, from
available correlations in the literature, very few take into account
the effect of the local dispersed phase fraction. Finally Zenit and
Sangani conducted experiments with a suspension of spherical
bubbles. They concluded that discrepancies found with the drag of
an isolated bubble are not accounted for in the currently available
theories [5].

This paper explores the drag on a fluid sphere inside an ide-
alized homogeneous flow (identical spheres having same veloc-
ities). Dispersed and continuous quantities will be denoted with
respective subscripts d and c . A priori, the drag coefficient (CD)
depends on fluid viscosities (µc ,µd), fluid densities (ρc , ρd), sphere
size (radius: a), dispersed phase fraction (ε—ratio of dispersed
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Nomenclature

Variables

a: Sphere radius (m)
Bi, Ci,Di: Integration constants
f : Force (N)
g: Gravitational acceleration (m/s2)
l: Inter-sphere distance (m)
P: Fluid pressure (Pa)
U, u, v: Velocity (m/s)
ρ: Mass density (kg/m3)
γ : Surface tension (N/m)
µ: Viscosity (Pa s)
δ: Dirac function
r, θ, φ: Spherical coordinate

Subscripts

c : Continuous phase
d: Dispersed phase
s: Sphere
r , θ , φ: Spherical coordinates

Dimensionless numbers

Re =
2ρcUsa

µc
: Reynolds number

Bo =
41ρga2

γ
: Bond Number

ρ∗
=

ρd
ρc
: Density ratio

µ∗
=

µd
µc

: Viscosity ratio
ε: Dispersed phase fraction
CD: Drag coefficient

Superscripts

⟨X⟩, X̄: Averaged variable
X∗: Dimensionless number
X i: Related to the interface

Other symbols are defined in the text

phase volume to total volume) and sphere velocity (Us). Assuming
there are no other parameters involved such as the presence of
impurities and according to the Buckingham-π theorem, the drag
coefficient (CD) is a function of four independent dimensionless
numbers. We chose the viscosity and density ratios µ∗

= µd/µc ,
ρ∗

= ρd/ρc , the Reynolds number Re = 2ρcUsa/µc and dispersed
phase fraction ε. For bubbly flow the dispersed phase fraction is
the void fraction whereas for droplet clouds the dispersed phase
fraction is one minus the void fraction.

The goal of the present work is to find a general relation
CD = F (µ∗, ρ∗, Re, ε). Our results will be compared with previous
studies. Several authors have proposed relations for an infinite
medium, meaning that CD = F (µ∗, ρ∗, Re, ε = 0) [6–11]. Some
authors have, however, considered the dispersed phase fraction
effect on bubble velocity [12,13].

The paper is divided into four sections. At first, a literature re-
view of available drag coefficient models is discussed. In Section 2,
new analytical solutions for Stokes and Euler flows depending on
void fraction are presented. In Section 3, a general model of drag
coefficient is presented and compared to numerical experiments.
In Section 4, the proposed model is compared to experimental
results. Themain results are summarized in the conclusion section.

1. Drag coefficient and shape of fluid sphere

This first section introduces basic definitions andpresents avail-
able correlations from the literature.

1.1. Drag correlations

Many studies proposed drag correlations [7–9,11–13]. No cor-
relation proposed dependence of drag on fluid density. The fluid
density has however an effect on the shape of the fluid sphere. As a
reasonable qualitative prediction, a small fluid sphere, character-
ized by a small Bond number value Bo = 41ρga2/γ ≪ 1, can
be considered as spherical. All drag coefficient relations presented
in Tables 1 and 2 are based on the following definition of the drag
force:

fD = −
1
2
CDρcπa2UsUs. (1)

As the viscosity ratio increases the shear stress at the sphere
surface increases. A large viscosity ratio µ∗

≫ 1 corresponds to
an attachment condition on its surface: a solid sphere or most of
droplet. Clift et al. proposed a drag coefficient correlation for a solid
sphere for Re < 3.7 × 105 (see Eq. (a) in Table 1) [7].

For low Reynolds numbers, the analytical solution using Stokes
approximation for a solid sphere leads to CD = 24/Re and for
a zero stress shear condition CD = 16/Re. Taylor and Acrivos
propose a correction taking into account convective terms, which
become predominant far away from the bubble, and the effect of
viscosity ratio (see Eq. (b) in Table 1). The first correction term of
this equation (b) corresponds to the equation correction proposed
by Oseen in 1910 when µ∗

→ ∞ [11]. This relation is a good
approximation of the drag coefficient for a solid sphere at the limit
when µ∗ tends to infinity and for low Reynolds numbers.

A null viscosity ratio (µ∗
= 0) corresponds to the ideal zero

shear stress condition. Most of the bubbles present this condition
on its surface characterized byµ∗

≪ 1.Mei et al. propose a relation
assuming the ideal zero shear stress condition for any Reynolds
number (see Eq. (c) in Table 1). Assuming potential flow, Re ≪ 1
and µ∗

≪ 1, leads to the same limits as Mei et al. correlation (c)
48/Re [9]. For low Reynolds numbers, the Mei et al. relation (c) has
the same limit than Taylor and Acrivos relation (Eq. (b) in Table 1
with µ∗

= 0).
For non-spherical shape, assuming potential flow and small

departure from sphericity, Moore obtains a correction of the drag
coefficient (d) depending on the aspect ratio (χ ).

Zuber and Hench have proposed a similar relation (e) in Table 2
which, however, does not take into account the viscosity ratio [12].
Ishii and Zuber have also proposed a relation (f) in Table 2 for a
droplet or small bubble at low Reynolds numbers which includes
dispersed phase fraction dependence [13].

Taylor and Acrivos, Zuber and Hench, Ishii and Zuber [8,12,13]
are in agreement for µ∗

≫ 1 and ε = 0. Some small bubbles,
probably due to impurity, behave as solid particles (equivalent to
µ∗

≫ 1).
The terminal velocity is determined by the equilibriumbetween

the buoyancy force applied on the fluid sphere (1ρga3) and its drag
force:

1
2
CDρcπa2U2

s =
4
3
π1ρga3 ⇒ Us =

1
3

16
CDRe

1ρga2

µc

=
1
3

16
CDRe

U0 (2)

where 1ρ = ρc − ρd represents the density difference and U0 is
a typical ‘‘sphere velocity’’ expressed as U0 = 1ρga2/µc . For zero
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