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a b s t r a c t

In this paper, the problem of a steady laminar three-dimensional stagnation point boundary layer flow
(Homann stagnation flow) on a permeable moving surface with anisotropic slip in a viscous fluid is
investigated. A similarity transformation reduces the governing system of nonlinear partial differential
equations into the ordinary (similarity) differential equations. The resulting equations are then solved
numerically by using the bvp4c function in Matlab. The effects of surface mass transfer parameter, slip
parameter andmoving parameter on the fluid flow characteristics are presented in the forms of tables and
figures and are discussed in detail. Finally, it is concluded from the stability analysis that the first (upper
branch) solution is stable and physically realizable, while the second (lower branch) solution is not stable.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

The study of stagnation-point flows has attracted the interest of
many researchers because of its applications in industry, including
flows over the tips of aircrafts and submarines. Early pioneerworks
include the two-dimensional stagnation-point flow against a sta-
tionary semi-infinite wall by Hiemenz [1], the axisymmetric stag-
nation flow by Homann [2] and the flow near the stagnation point
by Howarth [3]. Stuart [4], Tamada [5] and Dorrepaal [6] investi-
gated the two-dimensional oblique stagnation flow. The stagnation
flow close to a saddle point was investigated by Davey [7], while
Wang [8] studied the axisymmetric stagnation flow on a circular
cylinder.

In addition, the study of viscous flow on a moving wall is also
important due to its applications in forced convection cooling
processes. The two-dimensional normal stagnation flow towards a
plate that is oscillating in its ownplanehas been studied byRott [9].
Wang [10] and Libby [11] extendedHomann’s work by considering
the three-dimensional stagnation flow towards a moving plate.
Gorla [12] investigated the axisymmetric stagnation flow on a
moving circular cylinder. The problem of self-similar boundary
layer flow over a moving semi-infinite flat plate is discussed by
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Weidman et al. [13]. The flows induced by a plate moving normal
to planar (Hiemenz) and axisymmetric (Homann) stagnation-point
flows has been investigated by Weidman and Sprague [14].

All of the above mentioned studies deal with the no-slip con-
dition on the solid surface. However, such condition is no longer
applicable when slip occurs in various situations; for example
in perforated plates and wire nettings [15]; lubricated or chemi-
cally treated hydrophobic surfaces [16,17]; rough or porous sur-
faces [18]; and superhydrophobic nano-surfaces [19]. Some exam-
ples of industrial applications consisting slip boundary conditions
are the polishing of artificial heart valves, rarefied fluid problems,
and fluid flow on multiple interfaces. When the no-slip condition
is no longer valid, it should be replaced by the slip condition.
The linear slip boundary condition was introduced by Navier [20]
and Maxwell [21]. A comprehensive discussion and comparison
between slip and no-slip boundary condition was prepared by
Rao and Rajagopal [22]. Quite a number of studies on stagnation-
point flow with a slip boundary condition has been done by
Wang [23–25]. The existence and asymptotic behavior of the flow
in Wang [23] was investigated by Ishimura and Ushijima [26].
Rosca et al. [27] investigated the steady axisymmetric stagnation
point flow and heat transfer due to a permeable moving flat plate
with partial slip. Recently, Raees et al. [28] conducted an analysis
on three-dimensional stagnation flow of a nanofluid in suspension
of both the nanoparticles and microorganisms on moving surface
with anisotropic slip.

This present study discusses the effects of anisotropic slip first
considered in Wang [25] to three-dimensional stagnation-point
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Fig. 1. Physical model and coordinate system when the plate move towards the
origin. Notice the x-axis aligns, while y-axis is normal to the plate striations.

flow impinging on a permeable moving plate with different slip
coefficients in two orthogonal directions. Anisotropic slip is the
type of slip that depends on the flow direction and occurs on geo-
metrically striated surfaces and superhydrophobic strips [29,30].
Following Weidman et al. [13], Weidman and Sprague [14] and
Wang [24], a moving parameter ξ has been included into the
formulation to study both the caseswhen the plate ismoving out of
the origin (ξ > 0) andwhen the plate is moving towards the origin
(ξ < 0). The system of governing partial differential equations are
first transformed into a system of ordinary differential equations,
before being solved numerically by using the bvp4c function in
Matlab software. The expressions for the skin friction coefficients
and velocity profiles are determined to understand the flow char-
acteristics.

2. Mathematical formulation

Consider a steady three-dimensional stagnation point flow of a
viscous fluid past a moving permeable plate with anisotropic slip.
The Cartesian coordinates x, y and z are measured in the xy-plane,
with x- and y-axis are aligned along and normal, respectively, to
the striation on the plate, while fluid is placed along the z-axis. The
plate is assumed to move out or towards the origin with the con-
stant velocities ξU and ξV in the x and y directions, respectively,
where ξ is the dimensionless moving parameter, which is positive
(ξ > 0) when the plate moves out of the origin and negative (ξ <
0) when the plate moves towards the origin, as illustrated in Fig. 1.
The constant mass flux velocity is assumed as w0, with w0 < 0
corresponds to suction and w0 > 0 corresponds to injection or
blowing. The velocities of the inviscid (outer) flow are ue(x) = ax,
ve(y) = ay and we(z) = −2az. Under these assumptions, the
governing boundary layer equations can be written as
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subject to the boundary conditions

u = uw(x) = ξU + M1µ
∂u
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,

v = vw(y) = ξV + M2µ
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∂z
, w = w0 at z = 0,

u = ue(x) → ax, v = ve(y) → ay,

w = we(z) → −2az as z → ∞,
(5)

where u, v and w are the velocity components along the x-, y-
and z-axes, respectively, a is a positive constant, ν is the kinematic
viscosity of the fluid, µ is the dynamic viscosity, ∇2

=
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is the Laplacian operator in the Cartesian coordinates (x, y, z),

while M1 and M2 are the constant slip coefficients in the x- and
y−directions, respectively.

Introducing the following similarity transformations [25]

u = axf ′(η) + Uh(η), v = ayg ′(η) + Vk(η),

w = −
√
aν[f (η) + g(η)], η =

√
a
ν
z,

(6)

where primes denote differentiation with respect to η. The normal
velocity on the plate is w0, thus giving f (0) + g(0) = s, where
s = −

√
aν is the surface mass transfer parameter with s > 0

for suction and s < 0 for injection, respectively. Without loss of
generality, we write f (0) = s and g(0) = 0.

By substituting the similarity variables (6) into Eqs. (1)–(4), we
find that (1) is automatically satisfied, while (2)–(4) are reduced to
the following system of ordinary differential equations
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+ (f + g)f ′′

+ 1 − f
′2

= 0, (7)
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and the boundary conditions (5) become

f (0) = s, g(0) = 0, f ′(0) = Af ′′(0), g ′(0) = Bg ′′(0),
h(0) = Ah′(0) + ξ, k(0) = Bk′(0) + ξ, (11)
f ′(η) → 1, g ′(η) → 1, h(η) → 0, k(η) → 0 as η → ∞,

where A = M1µ
√
a/ν and B = M2µ

√
a/ν are the dimensionless

slip parameters. For the case of impermeable plate (s = 0) which
moves away from the origin (λ = 1), Eqs. (7)–(11) are similar with
those of Wang [25]. We also notice that the two-dimensional case
of the moving plate can been recovered when g = h = k = 0 and
λ < 0, while the axisymmetric case can be recovered when f = g
and λ > 0.

The physical quantities of practical interest are the skin frictions
τwx and τwy in the x- and y-directions of the moving plate, which
are defined as

τwx = M1µ
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τwy = M2µ

(
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= B[ayg ′′(0) + Vk′(0)].
(12)

3. Stability analysis

We test the fact that the dual solutions of the problem (7)–(11)
are stable or unstable by performing a stability analysis. In this
respect, we follow Weidman et al. [13] and Rosca and Pop [31,32]
who have shown for the forced convection boundary layer flow
past a permeable flat plate and, respectively, for the mixed con-
vection flow past a vertical flat plate, that the lower branch so-
lutions are unstable (not realizable physically), while the upper
branch solutions are stable (physically realizable). We begin the
analysis by considering the unsteady state for boundary value
problem (1)–(4). Eq. (1) holds, while (2)–(4) become
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