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a b s t r a c t

We investigate the hydrodynamic limit of a vapor–noncondensable gas mixture in a pressure gradient
between two walls. Earlier papers based on conventional asymptotic analysis techniques predict the
emergence of a boundary layer of noncondensables which completely blocks the vapor flow (Takata
and Aoki, 2001; Aoki et al., 2003). This ‘‘ghost effect’’ (Sone, 2007) contradicts physical intuition. In the
present paper we reveal the bifurcation structure of the underlying transport operator and combine it
with an appropriate macroscopic scaling. As a result, the hydrodynamic limit describes the coexistence
of a streaming mode of vapor with the other component at rest thus avoiding the ghost effect.

For sake of clarity, the paper restricts to a simplified setting (discrete velocity model, mechanically
identical particles). However, the results also apply in more general situations.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

The paper deals with the kinetic modeling of gas mixtures in
the fluid dynamic limit. Both problems, the kinetics of mixtures
(and in particular: vapor–noncondensablemixtures) andquestions
concerning the fluid dynamic limit of rarefied flows, have been re-
cently investigated in a couple of papers (see, e.g. [1–3] for the first,
and [2,4] with the literature cited there for the latter aspects). One
particular problem is that of boundary layers for mixtures. Due to
the scaling used at smallMachnumbers, it seems sufficient to study
planar problems like half space or slab geometries. Once this is
completely understood (see [1] for the evaporation–condensation
problem discussed below, and [3] for the discrete velocity case),
such boundary layers can be used to couple boundaries to hydro-
dynamic flow fields.

For the fluid dynamic limit there exist well-established and
widely accepted techniques like the Chapman–Enskog or the
Hilbert expansion. Matching these flow fields to boundary layers
designed e.g. to adapt the flow to diffusive reflection laws, seems
to create sufficiently good solutions in a number of problems. The
situation changes if a local matching of the boundary or interface
conditions is not sufficient, since they serve as global control
mechanisms. Such a situation occurs in the case of a binary gas
mixture consisting of vapor and of a noncondensable between
parallel walls. In the case of a pressure difference between the
walls, vapor starts to move from one wall (evaporation) to the
other (condensation) thus introducing a flux. The noncondensable
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follows this flux and creates a barrier at one of the walls slowing
down the vapor flux. Following the classical tools from asymptotic
analysis, this barrier has to bemodeled andmatched as a boundary
layer. This leads to a result in the hydrodynamic limit which is in
literature known as a ‘‘ghost effect’’ and which obviously does not
yield an appropriate description of the hydrodynamic limit.

The aim of the paper is to provide an alternative description to
this situation. Based on a detailed view on the collision operator
and its algebraic structure, and combined with an appropriate
scaling it yields a solution to the evaporation–condensation
problem which is much more intuitive from a physical point
of view. Due to the lack of data possibly used for comparisons
and benchmarks (experimental data like those in [5,6] are not
applicable; reliable numerical results are very hard to obtain due to
stiffness problems) it is a question of plausibilitywhether to accept
the presented ansatz or to look for an alternative. In our opinion,
it provides a reliable perspective, since the bifurcation property
(which is the keystone of the investigations) is based on a well-
known property of the algebraic structure of the involved operator
(this property is not worked out in investigations like those in [3],
which are thus restricted to small perturbations), and the choice of
diffusive scaling has proven useful in a variety of problems for the
derivation of diffusionphenomena [7–9]. This scaling gets rid of the
ghost effect; furthermore it also seems to be the appropriate way
to solve a couple of other problems related to the connections of
the Navier–Stokes and the Boltzmann equations (like the problem
discussed in [10]).

Consider a gas mixture composed of two species confined
between two parallel walls (Fig. 1). Species A (‘‘vapor’’) is emitted
and adsorbed at the boundaries according to a prescribed pressure
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Fig. 1. Schematic view on density profiles for mixture (upper line) and noncondensable (lower line) without (left) and with vapor flux (right).

difference. Species B (‘‘noncondensable’’) is totally reflected when
hitting the walls. If there is a pressure decay from the wall at x = a
to the wall at x = b, then a flow of vapor is induced from a to b. At
the same time one expects the noncondensable to follow the flow
and form a boundary layer at bwhich slows down the vapor flow.

This problem has been studied in a couple of papers in recent
years and in particular the fluid dynamic limit was of interest
(see, e.g. [11,12]). It turned out that the application of standard
asymptotic analysis methods for the fluid dynamic limit leads to
a curious situation. In the limit both A and B exhibit the same
Maxwellian profile with an infinitesimally small bulk velocity v
(in fact, v = 0), and a thin boundary layer of noncondensable
is formed at b completely suppressing the vapor flow. This
phenomenon contradicts physical intuition and is known in the
literature as ghost effect [13].

In the present work we propose a different macroscopic limit,
based on a scaling (‘‘diffusive scaling’’) which in the past has been
applied in a variety of problems for the derivation of diffusion
phenomena (see, e.g. [7–9]). It turns out that this kind of scaling
leads in the limit to a boundary layer of well-defined thickness
for the noncondensable which slows down but does not stop the
vapor flow. The results are based on a careful investigation of a
bifurcation phenomenon of the governing transport operator in
the presence of a small drift. In case of zero drift, its nullspace has
geometric dimension one (related to mass flow conservation) but
algebraic multiplicity two. At the emergence of a drift, the two-
dimensional nullspace splits up into two simple eigenspaces giving
rise to a new nonzero eigenvalue.

In this paper we are not interested at all in any existence the-
orem for some boundary value problems. The only intention is
to provide a scenario which allows in the hydrodynamic limit a
gas mixture with one component at rest while the second one is
streaming. This is the main result, and it reveals the major differ-
ence to the classical asymptotic expansions for which such a result
is not possible (see [11,12]). In order not to hide this behind a bunch
of technical details, we restrict to the following simplified setting.
However, due to the similarities of the structure of the underlying
transport operators (see, e.g. [14,15] in the case of the continuous
and the discrete Boltzmann collision operator), we are convinced,
that the present results can be generalized.

We investigate the problem in the framework of Discrete
Velocity Models (DVM) on the basis of two-particle collisions
(see [16]). We consider the steady spatially one-dimensional
problem in the slab [0, 1] in the simplest possible case of
mechanically identical species A and B. This means that both
are driven by the same Boltzmann collision operator. The only
difference is the wall interaction. Denote by g the distribution of
A and by h that of B. Then the sum f = g + h is governed by a
nonlinear one-species Boltzmann collision operator J . If f is known,
then g and h evolve according to a linear transport operator. We
restrict to the case of f being a fixed global Maxwellian. In the case
of zero flow between 0 and 1, f is a centered Maxwellian with zero
bulk velocity. The corresponding transport operator L0 exhibits a
typical structure concerning the algebraic nullspace which in a

similar situation has been observed in a couple of papers (e.g. [14]
for the continuum case, [17,15] for DVM).

For our investigation we require the DVM to satisfy four as-
sumptions (see (2.3), (2.4), (3.2), (3.8) below), two of them being
crucial. The first one is a symmetry condition and requires the ve-
locity grid and the collision model to be invariant under a change
of sign of the velocity components perpendicular to the walls. This
leads to a linear ODE system with a matrix having a special anti-
symmetric block structure which is essential. (In the paper we ex-
clude the case of zero normal velocities which would lead to a DAE
rather than an ODE system. However, numerical experiments indi-
cate that this condition can be weakened.) The second assumption
concerns the existence of a maximal number of pairwise different
nonzero eigenvectors. This in particular prohibits the existence of
artificial invariants of the transport operator. (A discussion of this
point may be found in [17,15].)

2. The evaporation–condensation problem

2.1. The model

Consider a gas mixture confined in the slab [0, 1]. The two
components of the gas are species A (‘‘vapor’’) with density
function g(t, x, v) and species B (‘‘noncondensable’’) with density
function h(t, x, v). The are represented in the form v = (vx, v⊥),
with vx the component pointing in x-direction, and v⊥ the
orthogonal complement.

Concerning the gas particle interaction, both types are me-
chanically identical in the sense that both are governed by the
same Boltzmann collision operator. The only difference lies in the
gas–wall interaction. While species A may pass through the walls
in both directions (condensation, evaporation), species B is totally
reflected. As a consequence, theremay be a total nonzeromass flux
of A through the walls while the mass flux of B is zero.

We write f = g+ h and let the governing equations for g and h
be the nonlinear two-species Boltzmann equation

(∂t + vx∂x)g = J[f, g] (2.1)
(∂t + vx∂x)h = J[f,h] (2.2)

with the collision operator J[., .] to be specified below. Since J[., .]
is bilinear, a consequence of (2.1), (2.2) is that f solves the nonlinear
Boltzmann equation

(∂t + vx∂x)f = J[f, f]. (2.3)

Inmost of the paper we restrict to the steady variant of the system,

vx∂xg = J[f, g] (2.4)
vx∂xh = J[f,h]. (2.5)

In order to extend the equations to a well-posed boundary value
problem, they have to be supplemented with boundary conditions
either in the form of reflection laws or by prescribing the flows into
the domain [0, 1]. For our purposes such a detailed description is
not necessary.
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