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a b s t r a c t

We consider the stability of the Couette–Taylor flow between porous cylinders with radial throughflow in
the limit of high radial Reynolds number. It has already been shownearlier that this flow canbeunstable to
two-dimensional perturbations. In the present paper, we study its stability to general three-dimensional
perturbations. In the limit of high radial Reynolds number, we show the following: (i) the purely radial
flow is stable (for both possible directions of the flow); (ii) all rotating flows are stable with respect to
axisymmetric perturbations; (iii) the instability occurs for both directions of the radial flow provided that
the ratio of the azimuthal component of the velocity to the radial one at the cylinder, through which
the fluid is pumped in, is sufficiently large; (iv) the most unstable modes are always two-dimensional,
i.e. two-dimensional modes become unstable at the smallest ratio of the azimuthal velocity to the radial
one; (v) the stability is almost independent of the rotation of the cylinder, through which the fluid is
being pumped out. We extend these results to high but finite radial Reynolds numbers by means of an
asymptotic expansion of the corresponding eigenvalue problem. Calculations of the first-order corrections
show that small viscosity always enhances the flow stability. It is also shown that the asymptotic results
give good approximations to the viscous eigenvalues even formoderate values of radial Reynolds number.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the stability of a steady viscous incompressible
flow in a gap between two rotating porous cylinders in the limit
of high radial Reynolds number R (constructed using the radial
velocity and the radius of the inner cylinder). The basic flow is
rotationally and translationally (along the common axis of the
cylinders) invariant and generalises the classical Couette–Taylor
flow to the case when a radial flow is present. The direction of
the radial flow can be from the inner cylinder to the outer one
(the diverging flow) or from the outer cylinder to the inner one
(the converging flow). It has been shown earlier [1,2] that this flow
can be unstable to small two-dimensional perturbations, and the
aim of the present paper is to understand what happens if three-
dimensional perturbations are allowed.

The stability of viscous flows betweenpermeable rotating cylin-
ders with a radial flow had been studied by many authors [3–9].
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(A. Morgulis).

One of the main aims of these papers was to determine the effect
of the radial flow on the stability of the circular Couette–Taylor
flow to axisymmetric perturbations, and the general conclusion
was that the radial flow affects the stability of the basic flow:
both a converging radial flow and a sufficiently strong diverging
flow have a stabilising effect on the Taylor instability, but when
a diverging flow is weak, it has a destabilising effect [5,6]. How-
ever, it was not clear whether a radial flow itself can induce in-
stability for flows which are stable without it. This question had
been answered affirmatively by Fujita et al. [10] and later by Gallet
et al. [11] who had demonstrated that particular classes of viscous
flows between porous rotating cylinders can be unstable to small
two-dimensional perturbations.

Later it had been shown by Ilin and Morgulis [1] that
both converging and diverging irrotational flows can be linearly
unstable to two-dimensional perturbations in the limit R →

∞ and that the instability persists if small viscosity is taken
into account. In Ref. [2], the same limit had been considered
for general viscous flows between porous cylinders with a radial
flow, and it had been shown that not only the particular classes
of viscous steady flows considered in [11,1] can be unstable to
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two-dimensional perturbations, but this is also true without any
restriction on angular velocities of the cylinders and for both
converging and diverging flows. A further development of the two-
dimensional theory can be found in a recent paper by Kerswell [12]
where, among other things, the effects of compressibility and
nonlinearity have been considered. Kerswell has also pointed to
a similarity between the instability induced by the radial flow
and the so-called stratorotational instability (SRI) which is due
to the axial density stratification of the Couette–Taylor flow (see
also [13]).

An interesting and important feature of the basic steady flow
considered here is that it strongly depends on the radial Reynolds
number R and on the direction of the radial flow. When R = 0
(no radial flow), it reduces to the standard Couette–Taylor flow,
but when R ≫ 1, it tends to an inviscid irrotational flow in which
both radial and azimuthal components of the velocity are inversely
proportional to r (where r is the radial coordinate of the polar
cylindrical coordinate system). The parameters of this inviscid flow
are determined by the radial and azimuthal components of the
velocity at the flow inlet (i.e. at the inner cylinder for the diverging
flow or at the outer cylinder for the converging flow) irrespective
of what happens at the outlet. This means that a single inviscid
flow represents the inviscid limit common for all viscous flows
with the same radial mass flux and the same azimuthal velocity at
the inlet irrespective of the angular velocity of the other cylinder
(which represents the flow outlet). Of course, the inviscid flow
approximates the exact viscous flow only outside a thin boundary
layer near the flow outlet, and the boundary layer depends on
the angular velocity of the other cylinder. However, an asymptotic
expansion for R ≫ 1, constructed in [2] for the two-dimensional
problem, shows that the leading term is completely determined by
the inviscid stability problem for the basic inviscid flow described
above and does not depend on the boundary layer. Interestingly,
the first viscous correction term in the expansion also does not
depend on the details of the boundary layer in the basic flow,
i.e. the first viscous correction does not feel what is happening at
the flow outlet.

In the present paper, we examine the effect of three-
dimensional perturbations on the stability properties of the basic
flow described above for the flow regimes with high radial
Reynolds number. We construct an asymptotic expansion of the
eigenvalue problem for normalmodes forR ≫ 1, study the inviscid
problem in detail and compute the principal viscous corrections
to the inviscid eigenvalues. In particular, we rigorously prove
that axisymmetric inviscid modes always decay exponentially, as
well as all inviscid modes for the purely radial basic flow. The
critical curves of the inviscid instability computed numerically
show that, for a wide range of the flow parameters and for
both diverging and converging flows, the unstable inviscid modes
appear as soon as the circulation of the velocity at the flow
inlet becomes larger that a certain critical value and that the
purely two-dimensional azimuthal waves are always the most
unstable ones, i.e. they correspond to the smallest critical value
of the inlet circulation. At the same time, the instability is almost
independent of the azimuthal velocity at the outlet. This means
that the Couette–Taylor flow in the presence of the radial flow can
be unstable far beyond the Rayleigh line (that separates inertially
stable and unstable regimes in the classical Couette–Taylor flow).

We also calculate viscous corrections and investigate their
effect on the instability. In particular, the analysis of the principal
viscous corrections shows that, for both the diverging and
converging flows, small viscosity always enhances the flow
stability.

The outline of the paper is as follows. In Section 2, we discuss
the exact viscous basic flow and its inviscid limit and formulate
the exact and inviscid linear stability problems. Section 3 contains
a linear inviscid stability analysis of both the diverging and
converging flows basic flows. In Section 4, the effect of viscosity
is considered. Discussion of the results is presented in Section 5.

2. Formulation of the problem

2.1. Exact equations and basic steady flow

Weconsider three-dimensional viscous incompressible flows in
the gap between two concentric circular cylinderswith radii r1 and
r2 (r2 > r1). The cylinders are permeable for the fluid and there is
a constant volume flux 2πQ (per unit length measured along the
common axis of the cylinders) of the fluid through the gap (the
fluid is pumped into the gap at the inner cylinder and taken out
at the outer one or vice versa). Q will be positive if the direction of
the flow is from the inner cylinder to the outer one and negative if
the flow direction is reversed. Flows with positive and negative Q
will be referred to as diverging and converging flows respectively.
Suppose that r1 is taken as a length scale, r21/|Q | as a time scale,
|Q |/r1 as a scale for the velocity and ρQ 2/r21 for the pressurewhere
ρ is the fluid density. Then the Navier–Stokes equations, written in
non-dimensional variables, have the form
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Here (r, θ, z) are the polar cylindrical coordinates, u, v and w are
the radial, azimuthal and axial components of the velocity, p is the
pressure, R = |Q |/ν is the Reynolds number (ν is the kinematic
viscosity of the fluid); subscripts denote partial derivatives; ∇

2 is
the polar form of the Laplace operator:
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We employ the following boundary conditions
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with Ω1 and Ω2 being the angular velocities of the inner and outer
cylinders respectively. Parameter β takes values +1 or −1 which
correspond to the diverging and converging flows respectively;
γ1 and γ2 represent the ratio of the azimuthal component of
the velocity to the radial one at the inner and outer cylinders
respectively. Boundary condition (5) prescribe all components of
the velocity at the cylinders and model conditions on the interface
between a fluid and a porous wall [14].

The only steady rotationally symmetric and translationally
invariant (in the z direction) solution of problem (1)–(5) is given
by
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