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a b s t r a c t

In this paper we examine the role of nonlinearity on the evolution of surface and internal layers in density
stratified fluids with steady but different shear currents in each stratified layer. As we show, when the
difference between the vorticities in each layer is sufficiently large and of different signs, large amplitude
nonlinear phenomena, particularly along the internal layer, emerges. Dispersive shock wave and solitary
wave phenomena appear in the parameter regimes examined in this work. Our results show that jumps
in density and vorticity generate strong nonlinear responses, and therefore fluid models should account
for these variations in order to improve their predictive capabilities.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Multilayer interface models are a common approximation
throughout fluid mechanics to examine otherwise intractable
problems if dealt with in their full generality [1]. By ignoring
viscosity, which would weakly smear any stable interface due to
small length scale diffusion,muchwork has beendone in particular
on studying nonlinear wave propagation in the presence of density
stratification and steady shear currents [2–8]. Density stratification
arising from temperature variations [1] supports the propagation
of strong nonlinear waves along atmospheric inversion layers
and along pycnoclines in the ocean. These waves are significant
mechanisms for energy transport due to their long-time stability.
Shear currents, arising from wind/wave interactions [4,9] or drag
effects along boundaries [4], while not specifically supporting
nonlinear waves, have significant impacts on their dynamics.

In the absence of density stratification, the impact of shear
currents on surfacewaves and bulk-flow is awell-studied problem.
Starting with the seminal paper of Benjamin [10], which looked at
small-amplitude nonlinear traveling waves over arbitrary vertical
shear flows, or flows with an arbitrary specification of the
vorticity of the flow, research has shown that vorticity strongly
modifies the shape of solitary waves leading in some cases to
overturning waves [4,11–14], inviscid eddy-formation [4,15], and
non-monotone pressure distributions [4,16,17]. A large body of
rigorous results concerning the existence and properties of steady
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periodic waves over steady shear currents has appeared as well.
See [18] and its extensive bibliography for reference. We also
note that [19] numerically examines the impact of bilinear shear
profiles, in which the vorticity has a discontinuous jump between
two constant values; see Figs. 1 and 2 for reference. Nonsteady
wave propagation has been looked at first in [20], experimentally
and numerically in [21], and recently in [22], which looks at fully
three-dimensional profiles.Wemake particular note of [20], which
was the first paper to examine the case of a bilinear shear flow.
Recent results in [23,24] have developed free surface models with
arbitrary vorticity profiles but with constant density throughout
the fluid.

Density stratified shear flows have likewise received much
attention over the years. In parallel with the description of bilinear
shear currents, we refer to fluid systems composed of two fluids of
differing constant densities, as bistratified fluids. Nonlinear, large
amplitude steadywaves for bistratified fluidswere studied in [6,8],
while in [25], the unsteady case is examined. As shown throughout
these papers, strong internal waves are found, and a complete
characterization of the linear stability of small amplitude internal
waves in the presence of a bilinear shear current was presented
in [7]. In more general circumstances, the KdV and Benjamin–Ono
equations were derived as models of long waves in the presence of
arbitrary vertical shear anddensity variations [26]. As noted in [26],
given the interest in and importance of internal solitary waves
in oceanic flows [27–30], an understanding of the influence of
shear currents is necessary to better model flow through channels,
estuaries, or relatively shallow water environments [31].

However, previous works on stratified shear flow have usually
focused on internal layers alone by either assuming rigid lids both
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Fig. 1. A discontinuous bilinear shear profile characterized by constant vorticities
ωj in a bistratified fluid with densities ρj . In the figure, ω1 > 0 and ω2 < 0.
Each stratified layer is referred to by Dj . Note the background velocity is continuous
through the line z = 0.

above and below the fluid [6–8,25,32], or by taking boundaries to
infinity [26]. Therefore, in this paper we look at the evolution of a
free surface and a free internal layer for a bilinear shear current in
a bistratified fluid; see Fig. 2 for reference.

Using the techniques in [33,34], a closed system describing the
evolution of the two free surfaces and their corresponding velocity
potentials are derived.We also do not assume the two layers are of
equal depth, which introduces the depth ratio parameter d̄. Using
this new formulation, we investigate two asymptotic regimes; a
small amplitude regime, and a shallow-water long-wavelength
regime. Using a small amplitude approximation (i.e., linearizing
about the zero solution) we study whether Kelvin–Helmholtz
(KH) instabilities form along either interface. As we show, for d̄
sufficiently small, or if the upper layer is sufficiently deeper than
the lower layer, and ρ = ρ2/ρ1 ≫ d̄+ 1, there is no KH instability
for systems in which the upper layer has relatively weak vorticity.
Weprovide numerical evidence that this result extends beyond the
assumptions that d̄ ≪ 1 and ρ ≫ 1 + d̄. We emphasize that we
have not included surface tension and that the background velocity
profile is continuous through the flat interface, and so at least at the
linearized level, differences in background vorticity can suppress
the KH instability for certain parameter regimes. However, we also
point out that KH instabilities are also found for some parameter
choices. Our results qualitatively agree with some aspects of the
work in [35]. For example, as we decrease the density ratio from
ρ = 820 to ρ = 1.5, we see stability regions shrink. However,
vorticity is not present in the bulk of the fluid in themodels studied
in [35], and as such, those results also rely on the jump in the
interface velocity and the stabilizing role of surface tension.

To characterize the impact of nonlinearity on bistratified, bilin-
ear shear systems, using a shallow water, long wavelength ansatz,
the flow is separated into four separate waves characterized by
four different wave speeds and four uncoupled Korteweg–de Vries
(KdV) equations describing the long time evolution of each sep-
arated wave. While exact formulas for the wave speeds and KdV
coefficients are not given due to their complexity, they are read-
ily computed numerically, and characterizations of each value as
functions of the stratification ρ and the vorticities ωj are given. By
making a particular assumption for the initial surface and inter-
nal wave heights and tangential velocities, and choosing ρ = 820,
which is the average ratio in density between air and water [36],
and d̄ = 0.25, we show that for relatively large differences in the
vorticities ωj that strong nonlinear waves along the interface form
and propagate. While the constant vorticity case, i.e. ω1 = ω2,
can lead to the formation of strong nonlinear waves along inter-
faces, the greater difference in shear profiles results in significantly
stronger nonlinear responses. Likewise, the formation of disper-
sive shock waves in our simulations shows that only looking for
traveling wave solutions does not capture all of the interesting
physics that one might observe. To complement these results, we
look at the much different case of nearly equal densities by choos-
ing ρ = 1.5 and d̄ = 4. Again, large vorticity differences lead to
the formation of stronger nonlinear waves than just the ω1 = ω2

Fig. 2. Free surfaces propagating over the surface, i.e. z = η1(x, t) + H , layer and
internal, i.e. z = η2(x, t), layer. The resting fluid depths are z = H , z = 0, and the
bottom boundary is at a depth z = −h.

case would predict, though the difference is not as drastic as in the
case ofρ = 820. Again, the results found in [35] are similar in spirit,
though the presence of vorticity in each fluid layermakes ourwork
allows for some significant differences to the results in [35].

So while these results show that significant nonlinear effects
can appear in bistratified, bilinear shear currents, they also hint
at more interesting effects that might appear in the presence
of more shear layers. We also do not address the case of the
density stratification ratio ρ being very close to unity. Given that
the average stratification ratio in the ocean is ρ = 1.028, this
is certainly a problem worthy of study. However, our approach
would necessitate a higher order expansion in order to capture
this new scale. Finally, we do not address the case of varying
bathymetry. Modeling multiple layers, very weak stratification,
and varying bathymetry are topics of future research. Potential
applications of our results could be to the emerging field of wave-
energy extraction where air and underwater currents should be
taken into account during modeling in order to generate accurate
approximations of sea states. However, we note that our results do
not take into account thermal fluctuations, viscosity, or the Earth’s
rotation, though for near shore applications these inadequacies
of our model may not be significant. See for example [37] which
studieswave-energy extraction in the incompressible, irrotational,
and inviscid regime.

In the following section, we present the details of the
formulation of the density stratified, bilinear shear current system.
In Section 3, we present the derivation of the surface variable
formulation of the problem described in Section 2. The presence of
KH instabilities is discussed in this section. In Section 4, we find the
shallowwater, long-wavelength approximationwhich leads to the
derivation of four de-coupled KdV equations. We also look briefly
at the linear dynamics of this system. In Section 5, we study the
evolution of the KdV equations and the nonlinear phenomena that
results due to the varying shear. Section 6 concludes the paper and
discusses future directions, while the Appendix collects techincal
details.

2. Problem formulation

We now examine the case of unsteady nonlinear wave
propagation over a bistratified, bilinear shear current as illustrated
in Fig. 1. Throughout, we let D1 represent the top fluid domain, and
D2 represent the bottom fluid domain. In each layer, we assume
the fluid to be both inviscid and incompressible with the only
external force being that of gravity. The interfaces are assumed to
be free surfaces described by z = η1(x, t) + H and z = η2(x, t).
Furthermore, we suppose that there is a flat bottom at z = −h
through which no fluid flows. See Fig. 2 for reference.

Restricting ourselves to a linear shear, or constant vorticity,
background flow within each layer of the fluid (j = 1, 2), Euler’s
equations of motion for (x, z) ∈ Dj become

∇ · uj = 0, (1)

∇ × uj = ωjŷ (2)

∂tuj + uj · ∇uj = −
1
ρj

∇pj − g ẑ, (3)
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