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h i g h l i g h t s

• We consider a rate-type fluid defined by an implicit constitutive equation.
• We formulate a mathematical model for the flow down an inclined plane.
• We consider lubrication approximation.
• We find analytical solutions.
• We perform numerical simulations.
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a b s t r a c t

We consider themotion of a rate-type fluid defined by an implicit constitutive equation down an inclined
plane. We assume that the characteristic height of the layer is small in comparison to the characteristic
length, so that lubrication approximation can be applied. After re-scaling the governing equations we
focus on the leading order approximation and we consider the quasi-steady regime which occurs when
the velocity of the advancing front and the velocity of the fluid at the inlet are substantially different.
We write the differential equation for the evolution of the upper free surface and solve it numerically,
plotting the profile of the layer together with the evolution of the advancing front. A comparison with the
Newtonian model is also presented, with particular emphasis on the motion of the front.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

In a series of papers [1–3] Rajagopal et al. discussed a class
of implicit constitutive models that generalizes the classical
Stokesian models in which the stress is explicitly expressed in
terms of the kinematical quantities (e.g. Newtonian fluids).

In the classical approach, Stokesian fluids are indeed described
by constitutive relations where the Cauchy stress1 T∗ is expressed
in terms of the symmetric part of the velocity gradient D∗, so that
T∗

= −p∗I+ f∗(D∗), where p∗ is the Lagrangemultiplier due to in-
compressibility and f∗ is a tensorial function. Under the constraint
trD∗

= 0 (incompressibility), the extra stress S∗
= T∗

−1/3(trT∗)I
is traceless, so that p∗

= −(1/3)trT∗ and

S∗
= f∗(D∗). (1)

∗ Corresponding author. Fax: +39 552751452.
E-mail address: lorenzo.fusi@unifi.it (L. Fusi).

1 The symbol ‘‘∗ ’’ denotes a dimensional quantity.

Eq. (1) is a special subclass of the more general implicit relation

h∗(T∗, D∗) = 0. (2)

When f∗ is invertible, relation (1) can be rewritten as2

D∗
= f∗−1 S∗


= f∗−1


T∗

−
1
3
(trT∗)I


= g∗(T∗). (3)

It is important to observe that, in general,models of type (2) cannot
be transformed into models of type (3). In [4], for instance, Malek
et al. investigated a particular model of type (3), namely

2µ∗D∗
=


α

1 + β∗II∗

2

S

n
+ γ


S∗, with II∗

2

S =
1
2

S · S, (4)

where α, β∗, γ are positive constants, n is a real number and µ∗

represents fluid viscosity.
The advantage of using generalized models such as (2) or

(3) becomes evident when we consider fluids with pressure

2 Usually, fluids of type (3) are called ‘‘stress power-law fluids’’.
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dependent viscosity as the one studied in [5–8], or when we have
to fit the experimental data as in [9,10]. In the latter case, for
instance, the reported shear stress versus shear rate graphs have
the characteristic S-shape and the experimental data cannot be
fitted using constitutive relations of type S∗

= f∗(D∗).
Another interesting example in which the constitutive model

cannot be derived within the classical framework (1) is the
Bingham visco-plastic model or its generalization (see, for in-
stance, [11–14] where the Bingham model is derived within the
implicit constitutive framework). The Bingham fluid is character-
ized by a critical stress threshold τ ∗

o that must be overcome in or-
der to start the flow. Whenever the shear stress is below τ ∗

o , the
fluid behaves as a rigid body, i.e. D∗

= 0. As a consequence, the
stress is not a single-valued function of the strain rate, i.e. the re-
lation between stress and velocity gradient cannot be written as
S∗

= f∗(D∗). On the contrary, if we use a relation as (2), namely

D∗
−


IID∗

2µ∗IID∗ + τ ∗
o


S∗

= 0,

the Binghammodel produces no indeterminacy. Following [15], in
this paper we extend the model (4) to include a stress relaxation
term. In practice we consider a ‘‘viscoelastic implicit fluid’’ whose
constitutive equation is

λ∗
▽

S∗
+


α

1 + β∗II∗

2

S

n
+ γ


S∗

= 2µ∗D∗, (5)

where ▽ stands for the upper convected time derivative (also
known as Oldroyd time derivative)
▽

S∗
=

DS∗

Dt∗
− L∗S∗

− S∗L∗
T
,

where L∗ is the gradient of the velocity field. We analyze the thin-
layer flow of a fluid of type (5) down an inclined plane (as shown
in Fig. 1), when the only driving force is gravity.

This particular problem has several geophysical applications
such as lava flows [16,17] and avalanches [18]. Of course other rhe-
ologies can be considered, such as the Newtonian flowmodel [19],
the viscoplastic model [20,21], the viscoelastic model [22], the
power-law model [23,24] or the one in which viscosity depends
on both the pressure and the shear rate presented by Rajagopal
et al. [25] and by Saccomandi and Vergori [26].

Here, starting from constitutive equation (5), we consider
four different models obtained selecting different values of the
parameters λ∗, α, β∗ and γ .

We study the downhill flow assuming that the tilt angle of the
inclined plane is ‘‘small’’ and that the characteristic height of the
fluid layer is small compared to the characteristic length (lubrica-
tion regime). The upper surface of the fluid and the advancing front
are unknown and have to be determined imposing a kinematical
condition. We focus on the so-called quasi-steady approximation,
assuming that the system evolves through steady states. In section
Section 3 we show that such a simplification is acceptable from a
physical point of view if an appropriate flow regime is considered.

The paper develops as follows: in Section 2 we formulate the
mathematical model. Section 3 is devoted to the flow model and
non-dimensionalization. In Section 3.1, we illustrate the assump-
tions concerning the order ofmagnitude of the characteristic num-
bers appearing in themodel, deriving the quasi-steady approxima-
tion. The analysis of themathematical problem begins in Section 4,
where the simple Newtonian model is considered. In Remark 1 we
investigate also the case in which, in place of the inlet discharge,
the inlet thickness of the layer is prescribed. In Section 5 we con-
sider two examples in which the relaxation term vanishes, while
Section 6 is devoted to the visco-elastic implicit model. For each
case wewrite the differential equation for the evolution of the free
surface andwe solve it numerically, plotting the evolving profile of
the fluid layer and the advancing front.

Fig. 1. Flow down an inclined plane. The advancing front is s∗ (t∗), whose

characteristic velocity, denoted as
·

s
∗

c , is given by (12).

2. The mathematical model

Let us consider a two-dimensional flow down an inclined plane
as the one depicted in Fig. 1, and suppose that the only driving force
is gravity. The velocity field has the form

v∗
= u∗(x∗, y∗, t∗)ex + v∗(x∗, y∗, t∗)ey.

The upper free surface y∗
= h∗(x∗, t∗) must fulfill the kinematical

conditions

∂h∗

∂t∗
+

∂

∂x∗

 h∗

0
u∗(x∗, y∗, t∗)dy∗


= 0, (6)

expressing the fact that h∗(x∗, t∗) is a material surface.
The unknown advancing front x∗

= s∗(t∗) evolves according to
the following balance equation (see formula (2.10) of [19])

Q ∗

t∗


=

 s∗

0
h∗(x∗, t∗)dx∗, (7)

where

Q ∗

t∗


=

 t∗

0
q∗(τ ∗)dτ ∗,

and where q∗(t∗) is the discharge at the inlet x∗
= 0. In this paper

we assume that q∗ (t∗) is given, i.e. there is an infinite reservoir
from which the fluid is continuously supplied at x∗

= 0 in a
prescribed way.

We denote byϕ the tilt angle, by L∗ the longitudinal length scale
and by H∗ the characteristic thickness of the fluid layer. Next, we
assume that

ε =
H∗

L∗
≪ 1,

so that lubrication approximation can be applied.
The constitutive model (5) can be rewritten as

λ∗
▽

S∗
+F ∗(II∗

2

S )S∗
= 2µ∗D∗, (8)

where F ∗ is given by

F ∗(II∗
2

S ) =


α(1 + β∗II∗

2

S )n + γ

, with II∗

2

S =
1
2

S · S. (9)

In particular, α, γ are dimensionless while [β∗] = pressure−2

and [µ∗
] = pressure · time. When α = 0, γ = 1, we recover

the classical upper convected Maxwell fluid model. Furthermore,
if λ∗

= 0, we recover the classical Newtonian model.
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