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a b s t r a c t

Two-dimensional problems of thin bodymotion in fluid parallel to the boundary at a distance comparable
with the length of the body are regarded. In particular, the resistance and lift forces in motion parallel to
free and rigid surfaces are determined. The fluid is assumed to occupy infinite semi-space and gravity is
neglected, in comparisonwith the fluid inertia. The solution is obtained for the problem of platemotion in
slightly compressible fluid at a definite depth under a free surface, with constant velocity and inclination
angle. The formation of a finite-length cavity behind the body is taken into account. The solution for the
linearized problem of a profile motion near a flat, solid surface in a slightly compressible fluid is given.
The screen effect becomes essential when the altitude is smaller than the chord. The numerical solution
for the incompressible flow about a profile flying over a rigid surface has been obtained by using a panel
method. In this way, the numerical lift is compared with the analytical solution. Moreover, streamlines
and velocities are discussed by placing the profile at different altitudes and incidences.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the present paper linear, approximate analyses of the flows
about a profilemoving below a free surface and flying above a solid
wall are discussed.

The first investigation has many practical applications, such
as determining the resistance and lift forces as functions of the
depth in underwatermotion of a bullet or shell, which is important
for evaluating the consequences of the puncture of orbit liquid
filled tanks by small space debris [1,2]. Similar problems arise in
evaluating the effects of wave-breakers on the streaming flow. The
problem is relevant to surface or underwater high-velocity gliding
of a thin profile, which is often used to reduce the resistance of
a glider. Many gliding problems have been solved for the case of
incompressible fluid, because flow velocities were expected to be
rather low.
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The problem of gliding near a free surface has been considered
within the framework of linear [3–7] and nonlinear [8–10] formu-
lations and found its generalized classical solution in the book by
Sedov [11]. The solution for the plate with a large angle of attack
was obtained by Karlikov and Tolokonnikov [12], for the case of
an unbounded incompressible fluid. High-speed streaming flows
accounting fluid compressibility were investigated in [13–15]. The
problems studied in [16] include the cases of both positive andneg-
ative angles of attack. However, the solutions relied heavily on the
fact that the cavity behind the gliding body has an infinite length.
The presence of a finite-length cavity has been considered in [16].

At the beginning of the 20th century it was observed that the
lift force of a wing moving near a flat surface increases strongly
in comparison with free flight. This fact was used in the creation
of new flying devices (screen-flights), which got the Russian
name ‘‘ekranoplan’’. The analytical solution of linear problems
for the profile motion near a flat surface is very important for
verifying the numerical modelling of this flow. Sedov obtained an
analytical solution for the lift force of a profile moving near a rigid
surface in terms of Weierstrass functions [11], by introducing the
theory of a complex variable. Unfortunately, this solution includes
free constants that cannot be easily evaluated. An approximate
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analytical solution for the problem of non-steady plane motion
near rigid surface was obtained by Rozhdestvensky [17]. A
theoretical investigation of the wing motion near a rigid surface
was made by Panchenkov [18,19], and experimental results have
been discussed in [20].

The present paper is organized as follows. Some relevant
statements about the two problems are discussed in Section 2. The
flow generated by the motion of a profile below a free surface
is analysed in Section 3. The evaluation of the pressure inside
the cavity for a given cavity length leads to a solution free from
undetermined constants. Also the inverse calculation (evaluating
the size of the cavity by starting from its pressure) is possible, even
if it implies the (numerical) solution of a transcendental equation.
The analysis of the flow around a profile flying above a solid wall is
presented in Section 4. In Section 5, the force on the profile given
by the analytical solution is compared with the one obtained from
a numerical simulation of the flow with a panel method. Finally,
some concluding remarks are presented in Section 6.

2. Mathematical statement of the problems

In the present paper, twokinds of steady, planar and irrotational
flows of a slightly compressible, inviscid fluid are investigated in an
analytical fashion, by using linear approximations. The first one is
the flow generated by the motion of a profile just below a flat free
surface, in the presence of a cavity behind the body. The second
flow is due to a profile flying at small distances above a solid, flat
wall.

As the fluid is slightly compressible, the Mach number M0 re-
ferred to the asymptotic velocity (V0) is very small. In this condi-
tion, once the quantity δ := (1 − M2

0 )
1/2 and the new coordinate1

x̃ := x/δ have been introduced, the disturbance velocity potential
ϕ satisfies the Laplace equation: ∂2x̃x̃ϕ+ ∂2yyϕ = 0 and the pressure
p is governed by the linearized Bernoulli equation:

p +
ρ0V0

δ
∂x̃ϕ ≡ p0, (1)

with p0 the ambient pressure at large distances from the profile.
The flow around a profilemoving at depth h below a free surface

is investigated in Section 3. The free surface is assumed flat and
is aligned along the x-axis, while the y-axis is directed inside the
liquid. On this boundary of the liquid domain, the pressure (p)
is assumed uniform and equal to the ambient pressure (p0), i.e.
p ≡ p0 or, by means of Bernoulli equation (1), ∂x̃ϕ = 0. The
profile is defined by the two functions h±(x̃), giving the positions
of two points on upper (h+) and lower (h−) sides of the boundary,
corresponding to the abscissa x̃ ∈ [0, L̃], L̃ being the chord of the
profile L divided by δ. The local slope angles α± on the upper and
lower sides of the profile are calculated as α±

= +dh±/dx. The
presence of a cavity behind the profile is accounted for. Inside the
cavity there is a mixture of gas and vapour at a pressure pc slightly
lower than the ambient one. The difference p0−pc will be named as
1p hereafter. In the linearized framework, the boundary condition
on the body is enforced on the straight segment z = ih+

+ σ
(bold characters indicate complex quantities, i is the imaginary
unit) with 0 < σ < L̃. The condition is that the normal component
of the velocity vanishes: ∂yϕ = V0α

+. In the linear approximation,
the cavity is pushed on the straight segment z = ih−

+ σ with

1 In the following, the division by δ of any length along the x-axiswill be indicated
with a tilde (̃). Nondimensional quantities will be indicated with a star (⋆). The
reference length is the chord of the profile (L) and the reference time is L/V0 ,
while for historical reasons the pressures are nondimensionalized by the dynamic
pressure ρ0V 2

0 /2 (ρ0 being the fluid density far from the body).

Fig. 1. Sketch of the flowfield for the motion with a free surface.

0 < σ < S̃, on which the boundary condition p = pc is enforced,
or, by means of the Bernoulli equation (1), ∂x̃ϕ = δ1p/(ρ0V0). On
the remaining part of the straight line z = ih + σ (for σ > S) it is
enforced that the pressure recovers its ambient value, so that the
Bernoulli equation (1) implies: ∂x̃ϕ = 0. In summary, the boundary
conditions are:

0 < x̃ < L̃, y = h+
: ∂yϕ = +V0α

+,

y = h−
: ∂x̃ϕ =

δ1p
ρ0V0

L̃ < x̃ < S̃, y = h : ∂x̃ϕ =
δ1p
ρ0V0

x̃ > S̃, y = h : ∂x̃ϕ = 0
−∞ < x̃ < +∞, y = 0 : ∂x̃ϕ = 0.

(2)

In Section 4 the flow around a profile flying over a flat wall is
investigated. The profile is defined as before, but the local slope
angles are now defined in the usual aeronautical way: α±

:=

−dh±/dx. In the linear framework, the boundary conditions of
vanishing normal velocities are enforced on the segments z =

ih±
+ x̃ with x̃ ∈ (0, L̃) as ∂yϕ = −V0α

±. The wall lies on the
x-axis. As for the body, also on the wall the condition of vanishing
normal velocity is enforced. In this case, the boundary conditions
are summarized as:0 < x̃ < L̃, y = h+

: ∂yϕ = −V0α
+,

y = h−
: ∂yϕ = −V0α

−

−∞ < x̃ < +∞, y = 0 : ∂yϕ = 0.
(3)

A suitable condition at infinity has to be added to the above
boundary conditions, in order to guarantee the uniqueness of the
solution. This will be discussed in Section 4.

3. Analytical solution for a plate moving in compressible fluid
near a free surface

In the present section, an approximate analytical solution for
the flow generated by a flat plate (α+

= α−
= α) moving near

a free surface is derived. The flow develops in the upper complex
half-plane, the position being written as z := x̃ + iy with y ≥ 0.
The free surface lies on the real axis, the body along the segment
z = x̃ + ih, with 0 ≤ x̃ ≤ L̃, and the cavity on the same half-line
for 0 ≤ x̃ ≤ S̃, as shown in Fig. 1. The local slope angles of the
upper and lower faces of the body are defined as α±

:= dh±/dx.
In the discussion below, the body will be a flat plate, so that the
upper and lower local slope angles coincide with the incidence of
the plate: α±

=: α. The complex disturbance potential ϕ(z) and
conjugate velocity u = dϕ/dz will be used.

The upper half-plane Im(z) > 0 with a cut along the half-
line starting from the point ih and parallel to the positive real
semi-axis is obtained by conformal mapping the upper half-plane
Im(w) > 0 [13] with the transformation:

z(w) = x̃(w)+ iy(w) =
h
π
(π i + w − logw − 1). (4)

The negative real axisw = σ+i0+ withσ < 0 goes on the real axis
z = x̃ + i0+, as shown in Fig. 2 (green and blue lines). Moreover,
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