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a b s t r a c t

A closed-form expression is derived for the probability density function (pdf) of the stretching rate
in homogeneous isotropic turbulence. The pdf has the Reynolds-number-independent Gaussian part
and Reynolds-number-dependent non-Gaussian part. The physical meanings of the relevant parameters
are discussed, and particularly the Reynolds-number effects on the pdf and statistical quantities are
examined.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The stretching rate (the SR in short) is the main source of ran-
dom stretching of the vorticity field in the production of the en-
strophy or the dissipation rate in homogeneous isotropic turbu-
lence. The SR plays an important role in the mathematical the-
ory of the Euler and Navier–Stokes equations [1], which is di-
rectly responsible to the formation of singularities and intermit-
tency of incompressible turbulent flows [2–4]. In addition, the
SR is directly related to the evolution of material elements in
turbulent mixing and diffusion. In this sense, the understanding
of the SR statistics is naturally the first step towards the statis-
tics of the dissipation rate, providing a necessary building block
in further development based on classical theoretical models of
homogeneous isotropic turbulence [5–7]. The statistical data of
the SR were obtained mainly from direct numerical simulations
(DNS) based on the Navier–Stokes (NS) equations. The proba-
bility density functions (pdfs) of the SR calculated in DNS indi-
cate a near-Gaussian distribution with a deviation in the tails
[8–11]. In addition, three-dimensional (3D) velocity measure-
ments indicate that although the pdf of the SR could be near-
Gaussian in the central region, the significant deviation from a
Gaussian distribution toward the negative sidewas observed in the
tails [12–15].

To shed some insights into the statistics of the velocity
derivatives, it is tempting to adapt stochastic differential equation
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models in statistical mechanics [16–18]. Since the non-Gaussian
behaviors of the relevant quantities prevail in turbulence, various
phenomenological models were proposed as the alternatives of
the Kolmogorov’s original model (K41) and refined model (K62)
[19–23]. Nevertheless, the connection of these non-Gaussian
models to the NS equations is tenuous, and there is no theoretical
justification for the assumed pdfs [24]. An attempt was made to
compute the pdf of the spatial velocity gradients from an evolution
equation for the mapping function [25,26]. To understand the
non-Gaussian properties of the velocity gradient, this mapping
method tried to incorporate certain dynamical aspects of the
pdf by mimicking the transport process of turbulence. However,
the evolution equation for the mapping function is not directly
derived from the NS equations. The non-Gaussian statistics of the
velocity increments was studied based on the evolution equation
derived from the equation for the velocity gradient tensor [27,28],
indicating that the pdf of the longitudinal velocity increment could
be significantly deviated and skewed from a Gaussian distribution.

The objective of this work is to obtain a closed-form solution
for the pdf of the SR. First, a transport equation for the SR is
derived from the NS equations, in which the terms explicitly
related to the SR are extracted. Then, under some reasonable
assumptions and approximations for homogeneous isotropic
turbulence, this transport equation is recast into a randomordinary
differential equation, and further an asymptotic analytical solution
of the Fokker–Planck equation is obtained for the pdf of the SR
fluctuation, which gives a distribution that can be factored into
the Gaussian, exponential and higher-order exponential parts. The
physical meanings of the relevant parameters are discussed, and
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particularly the Reynolds-number effects on these parameters and
the statistical quantities are evaluated. The behavior of the non-
Gaussian part is explored by examining the associated potential
surface in the phase space.

2. Transport equation for stretching rate

The stretching rate (the SR) of a fluid velocity field is defined as

S = eiejuj,i, (i, j = 1, 2, 3) (1)

where ei are the components of a unit random directional vector,
ui are the fluid velocity components, and uj, i = ∂uj/∂xi is the
velocity gradient tensor. Here, the index summation is applied. The
dyadic product eiej represents the directional projection on the
unit vector when it is applied to a second-order tensor. When ei
is defined as the unit separation vector ei = ri/r between two
fluid particles in turbulence, we have S = rirjuj,i r−2 that plays
an important role in inertial particle clustering in turbulence [29].
Similarly, S = liljuj,i l−2 for stretching of a material line is the
fundamental quantity in turbulent mixing and diffusion, where li/l
is the unit directional vector of a material line [8]. Stretching of
a vorticity line characterized by S = ωiωjuj,iω

−2 plays a critical
role in the evolution equation of the enstrophy ω2

= ωiωi, i.e.,
dω2/d t = 2S ω2 when the viscosity is neglected. Therefore, the
SR is the key physical quantity for understanding of the statistics
of the enstrophy and dissipation rate in the energy cascade in
turbulence. Although the unit directional vector ei in Eq. (1) can be
defined differently depending on a specific application, a generic
transport equation for S could be derived.

From the NS equations for an incompressible flow

ui, t + ujui, j = −ρ−1p, i + ν ui,jj, (2)

we have
DS
Dt

= ui, k
D (eiek)

Dt
− ρ−1eiekp, ik − eiekuj, kui, j

+ ν

S, jj − (eiek), jj ui, k − 2 (eiek), j ui, jk


, (3)

where eiek is a dyadic product of the unit random vectors, ui are
the fluid velocity components, D/Dt = ∂/∂t + uj∂/∂xj is the
material derivative, p is the fluid pressure, ui, t denotes ∂ui/∂t , and
ui,jj denotes ∂2ui/∂xj∂xj. The dyadic product eiek represents the
projection on the unit directional vector when it is applied to a
second-order tensor.

In order to extract some terms explicitly related to S in the right-
hand side (RHS) of Eq. (3), the decompositions of the second-order
tensors into an isotropic part and an anisotropic part are used. The
velocity gradient tensor ui, k is decomposed into

ui, k = Γ δik + Ωik, (4)

where δik is the Kronecker delta, Γ is a random isotropic veloc-
ity gradient magnitude, and Ωik is the remaining anisotropic ten-
sor. For i = k, due to the incompressibility condition ui, i = 0,
a constrain is Ωii = −3Γ . The SR can be expressed as S =

eiej uj, i = Γ + Ω , where Ω = eiej Ωij. In fact, the rationale
behind such tensor decomposition is the Cayley–Hamilton theo-
rem [28,30]. According to the Cayley–Hamilton theorem, we have
ui,mum, kuk, j + PsU i,kuk,j +QSui,j + RSδij = 0, where the first, sec-
ond and third invariants are PS = − ui, i, QS = − ui,mum, i/2, and
RS = − ui,mum, nun, i/3, respectively. For an incompressible flow
with PS = − ui, i = 0, Γ and Ωik are related to the invariants of
ui, k, i.e., Γ = − RSQ−1

S and Ωik = −Q−1
S u i,mum, n un, k.

Further, to evaluate the pressure term and other terms, the
decomposition for the directional tensor eiek is formally applied,
i.e.,

eiek = E δik + Fik, (5)

where E is a random isotropic magnitude of eiek, and Fik is the
remaining anisotropic tensor. For i = k, the constraints are eiei = 1
and is E = (1 − Fii)/3. The tensor decomposition based on the
Cayley–Hamilton theorem leads to the following relations E =

− RE/QE and Fik = −PEQ−1
E eiememek − Q−1

E eiememenenek, where
the first, second and third invariants are PE = − eiei = −1,
QE = − eiememei/2, and RE = − eiememenenei/3. The pressure
term is written as ρ−1eiekp, ik = ρ−1E p, ii + ρ−1Fik p, ik, where
ρ−1p, ii = −ui, juj, i = 3Γ 2

− ΩijΩji [31].
Eq. (4) is substituted into Eq. (3), which leads to an intermediate

equation that contains a quadratic term of S. Further, by using Eq.
(5), other terms particularly the pressure term are evaluated, and
the additional linear and quadratic terms of S are extracted. After
some algebra, we have obtain the following transport equation for
S

DS
Dt

= f −

a S + b S2


+ ν S,jj + 6ν E,j


SF−1

ii


,j , (6)

where the coefficients are defined as

a = 3F−1
ii


DE
Dt

− ν E, jj


+ 2EFjkΩjkF−2

ii


4E2

− 3 + 3Fii

, (7a)

b = 1 + 3EF−2
ii (1 − 3E) , (7b)

f = 3FjkΩjkF−1
ii


DE
Dt

− ν E, jj


+ Ωik


DFik
Dt

− ν Fik, jj


− ρ−1Fikp, ik

+

(9 − 3E) F−2

ii + 6EF−1
ii + 1

 
FjkΩjk

2
− FikΩjkΩij

− ν

6E, j


FjkΩjkF−1

ii


, j + 2Fik, jΩik, j


. (7c)

The physical meanings of the relevant terms in Eq. (6) are
discussed. The transport of S in turbulence is driven by the random
force f that collectively incorporates all complex interactions
between the anisotropic parts of the velocity derivative tensor and
the directional tensor and the projected second-order derivative
tensor of pressure projected onto the anisotropic part of the
directional tensor. The term a S + b S2 in Eq. (6) is a damping
term. The term ν S,jj is a homogeneous viscous diffusion, while
6ν E, j


SF−1

ii


, j is interpreted as a non-homogeneous viscous flux

of S projected along the direction of the gradient E, j. The factor
FjkΩjk in a and f is interpreted as the projection of the anisotropic
part of the velocity derivative tensor uj, i onto the anisotropic part
of the directional sensor eiek. This term represents interactions
between the anisotropic parts of the velocity derivative tensor
and the directional sensor. Similarly, FikΩjkΩij represents the triple
interaction. The term Fik, jΩik, j represents interaction between the
derivatives of the anisotropic parts of the velocity derivative tensor
and the directional tensor. Formally, DE/Dt − ν E, jj and DFik/Dt −

ν Fik, jj in Eqs. (7a) and (7c) represent the virtual source terms in the
transport of E and Fik, respectively. The term Fikp, ik is the projection
of the second-order derivative tensor of pressure (the pressure
Hessian) onto the anisotropic part of the directional sensor eiek. In
fact, the pressure Hessian can be similarly decomposed into the
isotropic local term and the anisotropic term that represents the
non-local contribution [10].

3. Random differential equation for stretching rate

Homogeneous isotropic turbulence is considered, where the
statistical properties of the random variables are independent of
the position. In a framemoving with a fluid element, since D/Dt =

d/dt , the quantities in Eq. (6) are considered as a function of time
only. Furthermore, in the inertial range, the viscous terms can be
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