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a b s t r a c t

A velocity decomposition method is developed for the solution of three-dimensional, unsteady flows.
The velocity vector is decomposed into an irrotational component (viscous-potential velocity) and a
vortical component (vortical velocity). The vortical velocity is selected so that it is zero outside of the
rotational region of the flow field and the flow in the irrotational region can thus be solely described by
the viscous-potential velocity. The formulation is devised to employ both the velocity potential and the
Navier–Stokes-based numerical methods such that the field discretization required by the Navier–Stokes
solver can be reduced to only encompass the rotational region of the flow field and the number of
unknowns that are to be solved by the Navier–Stokes solver is greatly reduced. A higher-order boundary-
element method is used to solve for the viscous potential by applying a viscous boundary condition to the
body surface. The finite-volume method is used to solve for the total velocity on a reduced domain, using
the viscous-potential velocity as the boundary condition on the extent of the domain. The two solution
procedures are tightly coupled in time. The viscous-potential velocity and the total velocity are time
dependent due to the unsteadiness in the boundary layer and the wake. The solver is applied to solve
three-dimensional, laminar and turbulent unsteady flows. For turbulent flows, the solver is applied for
both Unsteady-Reynolds-Averaging-Navier–Stokes and Large-Eddy-Simulation computations.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The decomposition of the velocity vector has been long
exploited for the analysis of fluid flows. For example the velocity
of the fluid can be decomposed into components that respectively
depends on the expansion rate, vorticity, and boundary conditions
of the flow field [1,2]. In [3], a velocity decomposition is applied for
separation of wave and viscous resistance of ships. In [4], viscous
flows are calculated by a Boundary-ElementMethod (BEM) using a
special form of velocity decomposition so that the BEM can retain
its efficiency. In [5], the decomposition of the velocity vector is
used to theoretically study the evolution of water waves under
the influence of viscosity. Such techniques have also been used to
improve the efficiency of fieldmethods for numerically solving the
Navier–Stokes equations [6–14].

In this work, the velocity decomposition algorithm first
introduced in [15], is extended to solve three-dimensional (3D),
unsteady flow problems. Themain difference that sets our method
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apart from other similar methods is the ability to fully describe
the flow field external to the rotational region through a viscous
potential which is solved by using a BEM on the physical-body
boundary. The motivation for this is that the field discretization
required by the Navier–Stokes solver can be reduced to only
encompass the rotational part of the flow region. Our target
applications are external incompressible flows with high Reynolds
number, such as those that appear in naval and automotive
engineering. The portion of the flow field that is rotational only
resides within a small region around the body and the wake
downstream of the body, while the rest of the flow domain is
irrotational and can be described by a scalar potential function.
For a description of the development of our velocity decomposition
approach, see [15,16].

In previous work, [15,6,16,9], the velocity decomposition
method has been developed to address steady flows of two-
dimensional (2D), axis-symmetric, non-lifting bodies without
water waves, or 2D bodies that can have lift and be near a water
surface. In this paper, the algorithm is extended to address 3D,
unsteady flow problems. To solve for 3D flows, a model for 3D
viscous potential is necessary. A higher-order boundary-element
solver based on B-splines is used instead of the 2D panel method
that was used in previous studies. The unsteadiness of the flow
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Fig. 1. The schematic of the computational domain.

field is calculated using a tightly coupled algorithm previously
outlined for 2D flows in [17]. Only cases with non-accelerating
bodies are presently considered in this work. The unsteadiness
in the solutions are due to the fluid flow itself, such as the
development of the boundary layer, separation, turbulence and
vortex shedding. Themethodpresented in thiswork can be directly
applied to cases with bodies that are accelerating.

The paper is outlined as follows. In Section 2, the formulation
of the Navier–Stokes problem of interest is described. More specif-
ically, the velocity decomposition for 3D, unsteady flows is intro-
duced, and the resultant viscous potential and Navier–Stokes sub-
problems are stated. In Section 3, the numerical implementation
of the solution procedures for the sub-problems and the coupling
algorithm are presented. In Section 4, the algorithm is tested on
a set of example problems. The 3D viscous potential is calculated
and examined using several test cases, and the differences between
our viscous potential and the inviscid potential are demonstrated.
The 3D, turbulent and laminar flows over a finite flat plate are
studied. Turbulent, double-body flow over a Wigley hull is calcu-
latedwithin the Large-Eddy-simulation framework. For all the test
cases, the velocity decomposition solver is used to calculate the
flow field within a greatly reduced domain. The reduced domain
results are compared with the corresponding Navier–Stokes solu-
tion calculated in sufficiently large domains using a conventional
solver. Section 5 contains the summary and conclusions.

2. Problem formulation

For the problem considered in thiswork, viscous effects, such as
the boundary layer and viscous wake, are assumed to be confined
within a small region around the body and the fluid flow is
irrotational for the rest of the domain. This is a suitable assumption
for many high Reynolds number applications such as those with
automobiles, trains, aerospace and marine vehicles, etc. The flow
field of interest is governed by the incompressible Navier–Stokes
equations, shown in Eqs. (1) and (2).

∇ · u = 0 (1)
∂u
∂t

+ ∇ · (u ⊗ u) = −
∇p
ρ

+ ν∇
2u (2)

where u = u(x, t) is the total velocity vector field that varies in
space and time, p = p(x, t) is the pressure, ρ is the density of the
fluid and ν is the kinematic viscosity.

The schematic of the computational domain is shown in Fig. 1.
A body-fixed coordinate system is used and the position vector is
x = x î + y ĵ + z k̂. On the body boundary SB, the no-slip boundary
condition, Eq. (3), is enforced.

u = 0 on SB. (3)

The disturbance due to the presence of the body disappears far
away from the body, so the far-field boundary condition, Eq. (4), is
applied on S∞.

lim
|x|→∞

u = U∞ î. (4)

The initial condition is prescribed through an initial velocity field
u(x, 0) = u0(x), where u0 is the initial velocity field.

Throughout this paper, the problem described above is
designated as the Navier–Stokes problem, which consists of the
equations, domain and the boundary conditions. TheNavier–Stokes
problem also refers to situations in which a varied form of
the governing equations are used such as when the turbulence
is modeled through either the Unsteady-Reynolds-Averaged-
Navier–Stokes (URANS) equations and Large-Eddy-Simulation
(LES) Navier–Stokes equations.

The velocity decomposition used in this work is similar to the
one used in [9], except that all three velocities are time dependent
as shown in Eq. (5), where ∇ϕ and w are the viscous-potential
velocity and the vortical velocity respectively. All three velocities
are assumed to vary in time but not necessarily with the same time
scale. The time dependence of each term in Eq. (5) is discussed in
more detail in Section 3.3. All three components of the velocity are
divergence free.

u(x, t) = ∇ϕ(x, t) + w(x, t). (5)

The velocity decomposition is not uniquely defined without
proper boundary conditions [18]. Various forms can be devised
for different calculation purposes [4]. In our work we seek a
decomposition such that the vortical velocityw is zero outside the
rotational region of the flow field, Eq. (6).

w = 0 for |x| ≥ δ. (6)

In viscous flows, the vorticity ω vanishes exponentially at infin-
ity [1]. Hence the irrotational region defined in this work is where
the vorticity is negligible for all practical purposes, [19]. Then the
vortical region denotes the complement of the irrotational region.
The vorticity thickness, (i.e. the body-normal distance away from
the body boundary where the flow becomes practically irrota-
tional) is denoted as δ. The vortical velocity w can be uniquely de-
fined by applying the boundary condition Eq. (7) on the boundary
of the vortical region, Sδ . (The illustration of δ and Sδ can be found
in Fig. 2.) Then the decomposition is also uniquely defined for a
given velocity field and the viscous-potential velocity ∇ϕ can fully
describe the flow field outside the vortical region Eq. (8).

w · n̂ = wn = 0 on Sδ (7)
∇ϕ = u for |x| ≥ δ. (8)

The Navier–Stokes problem is decomposed into a Navier–
Stokes sub-problem and a viscous potential sub-problem by
applying the decomposition stated in Eq. (5). The Navier–Stokes
sub-problem is defined similarly as the Navier–Stokes problem,
except that it is defined within a greatly reduced domain, VR. The
boundary of the reduced domain, SR, is chosen to encompass the
rotational region of the flow field. The velocity boundary condition
Eq. (9) on the reduced domain boundary is prescribed through the
viscous-potential velocity.

u(x, t) = ∇ϕ(x, t) on SR. (9)

The total velocity vector u is calculated by solving the Navier–
Stokes sub-problem together with a BVP (Boundary-Value Prob-
lem) that governs ϕ.

The unknown variable wewant to solve in the viscous potential
sub-problem is the viscous potential ϕ. The governing equation is
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