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a b s t r a c t

The knowledge about a planned system in engineering design applications is never complete. Often, a
probabilistic quantification of the uncertainty arising from this missing information is warranted in order
to efficiently incorporate our partial knowledge about the system and its environment into their respec-
tive models. This leads to a robust stochastic design framework where probabilistic models of excitation
uncertainties and system modeling uncertainties can be introduced; the design objective is then typically
related to the expected value of a system performance measure, such as reliability or expected life-cycle
cost. For complex system models, this expected value can rarely be evaluated analytically and so it is
often calculated using stochastic simulation techniques, which involve an estimation error and significant
computational cost. An efficient framework, consisting of two stages, is presented here for the optimiza-
tion in such robust stochastic design problems. The first stage implements a novel approach, called sto-
chastic subset optimization (SSO), for iteratively identifying a subset of the original design space that has
high plausibility of containing the optimal design variables. The second stage adopts some other stochas-
tic optimization algorithm to pinpoint the optimal design variables within that subset. The focus is pri-
marily on the theory and implementation issues for SSO but also on topics related to the combination of
the two different stages for overall enhanced efficiency. An illustrative example is presented that shows
the efficiency of the proposed methodology; it considers the optimization of the reliability of a base-iso-
lated structure considering future near-fault ground motions.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

In engineering design, the knowledge about a planned system is
never complete. First, it is not known in advance which design will
lead to the best system performance in terms of a specified metric;
it is therefore desirable to optimize the performance measure over
the space of design variables that define the set of acceptable de-
signs. Second, modeling uncertainty arises because no mathemat-
ical model can capture perfectly the behavior of a real system
and its environment (future excitations). In practice, the designer
chooses a model that he or she feels will adequately represent
the behavior of the built system as well as its future excitation;
however, there is always uncertainty about which values of the
model parameters will give the best representation of the con-
structed system and its environment, so this parameter uncer-
tainty should be quantified. Furthermore, whatever model is
chosen, there will always be an uncertain prediction error between
the model and system responses. For an efficient engineering de-
sign, all uncertainties, involving future excitation events as well
as the modeling of the system, must be explicitly accounted for.

A probability logic approach provides a rational and consistent
framework for quantifying all of these uncertainties [1]. In this
case, this process may be called robust stochastic system design.

In this context, consider some controllable parameters that de-
fine the system design, referred to herein as design variables,
u ¼ ½u1u2; . . . ;unu

� 2 U � Rnu , where U denotes the bounded
admissible design space. Also consider a model class that is chosen
to represent a system design and its future excitation, where each
model in the class is specified by an nh-dimensional vector
h ¼ ½h1h2 . . . hnh � lying in H � Rnh , the set of possible values for the
model parameters. Because there is uncertainty in which model
best represents the system behavior, a PDF (probability density
function) p(h|u), which incorporates available knowledge about
the system, is assigned to these parameters. The performance for
a robust-to-uncertainties design is, then, expressed by the stochas-
tic integral:

Eh½hðu; hÞ� ¼
Z

H
hðu; hÞpðhjuÞdh; ð1Þ

where Eh[�] denotes expectation with respect to the PDF for h and
hðu; hÞ : Rnu � Rnh ! R denotes the performance measure of the sys-
tem. In engineering applications, stochastic design problems are
many times posed by adopting deterministic objective functions
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and using constraints related to stochastic integrals like (1) to char-
acterize the admissible design space-such an approach is common,
for example, in the context of reliability-based design optimization
(RBDO) where reliability constraints are adopted [2,3]. In this study,
though, we focus on design problems that entail as objective func-
tion a stochastic integral of the form (1). The optimal stochastic de-
sign problem in this case takes the form:

minimize Eh½hðu; hÞ�;
subject to fcðuÞP 0;

ð2Þ

where fc(u) corresponds to a vector of constraints. Such optimiza-
tion problems, arising in decision making under uncertainty, are
typically referred to as stochastic optimization problems (e.g.
[4,5]). The constraints in optimization (2) can be taken into account
by appropriate definition of the admissible design space U; the sto-
chastic design problem is then equivalently formulated as:

u� ¼ arg min
u2U

Eh½hðu; hÞ�: ð3Þ

For this optimization, the integral in (1) must be evaluated. For
complex systems this integral can rarely be calculated, or even effi-
ciently approximated, analytically and so it is commonly evaluated
through stochastic simulation techniques. In this setting, an unbi-
ased estimate of the expected value in (1) can be obtained using a
finite number, N, of random samples of h, drawn from p(h|u):

bEh;N½hðu;XNÞ� ¼
1
N

XN

i¼1

hðu; hiÞ; ð4Þ

where XN = [h1, . . . ,hN] is the sample set of the model parameters
with vector hi denoting the sample of these parameters used in
the ith simulation. This estimate of Eh[h(u,h)] involves an unavoid-
able error eN(u,XN) which is a complex function of both the sample
set XN as well as the current system model configuration. The opti-
mization in (3) is then approximated by:

u�N ¼ arg min
u2U

bEh½hðu;XNÞ�: ð5Þ

If the stochastic simulation procedure is a consistent one, then as
N ?1, bEh;N½hðu;XNÞ� ! Eh½hðu; hÞ� and u�N ! u� under mild regular-
ity conditions for the optimization algorithms used [5]. The exis-
tence of the estimation error eN(u, XN), which may be considered
as noise in the objective function, contrasts with classical determin-
istic optimization where it is assumed that one has perfect informa-
tion. Fig. 1 illustrates the difficulties associated with eN(XN,u). The
curves corresponding to simulation-based evaluation of the objec-
tive function have non-smooth characteristics, a feature which
makes application of gradient-based algorithms challenging. Also,
the estimated optimum depends on the exact influence of the esti-
mation error, which is not the same for all evaluations. Another
source of difficulty, especially when complex system models are

considered, is the high computational cost associated with the esti-
mation in (5) since N system analyses must be performed for each
objective function evaluation. Even though recent advanced sto-
chastic optimization algorithms (see Section 3) can efficiently ad-
dress the first two aforementioned problems this latter one
remains challenging for many engineering design applications. Spe-
cialized, approximate approaches have been proposed in various
engineering fields for reduction of the computational cost (e.g.
[2,3,6] for RBDO problems). These approaches may work satisfacto-
rily under certain conditions, but are not proved to always converge
to the solution of the original design problem. For this reason such
approaches are avoided in this current study. Optimization problem
(5) is directly solved so that u�N � u�.

An efficient framework, consisting of two stages, is discussed in
the following sections for a computational efficient solution to this
optimization. The first stage implements a novel approach, called
Stochastic subset optimization (SSO) [7,8], for efficiently exploring
the global sensitivity of the objective function to the design vari-
ables and for iteratively converging to a subset of the original de-
sign space that has high plausibility of containing the optimal
design variables and, additionally, consists of near-optimal design
configurations. The second stage adopts some appropriate stochas-
tic optimization algorithm to pinpoint, more precisely, the optimal
design variables within the set identified in the first stage. The fo-
cus is primarily on the theory and implementation issues for SSO
but also on topics related to the combination of the two different
stages for overall enhanced efficiency.

2. Stochastic subset optimization

Stochastic subset optimization (SSO) was initially suggested for
reliability-based optimization problems (for a proper definition of
such problems see Section 5.1 later on) in [9] and has been recently
[8] extended to address general stochastic design problems, such
as the one in (2). The basic features of the algorithm are summa-
rized next.

2.1. Augmented problem and subset analysis

Consider the modified positive function,
hsðu; hÞ : Rnu � Rnh ! Rþ defined as

hsðu; hÞ ¼ hðu; hÞ � s where s < min
u;h

hðu; hÞ ð6Þ

and note that Eh[hs(u,h)] = Eh[h(u,h)] � s. Since the two expected val-
ues differ only by a constant, optimization of the expected value of
h(�) is equivalent, in terms of the optimal design choice, to optimi-
zation for the expected value for hs(�). In the SSO setting we focus on
the latter optimization.

The basic idea in SSO is the formulation of an augmented prob-
lem, a general concept initially discussed in [10] for reliability-
based design problems, where the design variables are artificially
considered as uncertain with distribution p(u) over the design
space U. In the setting of this augmented stochastic design prob-
lem, define the auxiliary PDF:

pðu; hÞ ¼ hsðu; hÞpðu; hÞ
Eu;h½hsðu; hÞ�

/ hsðu; hÞpðu; hÞ; ð7Þ

where p(u,h) = p(u)p(h|u). The normalizing constant in the denom-
inator is defined as:

Eu;h½hsðu; hÞ� ¼
Z

U

Z
H

hsðu; hÞpðu; hÞdhdu ð8Þ

and corresponds to the expected value in the augmented uncertain
space. This expected value is not explicitly needed, but it can be ob-
tained though stochastic simulation, which leads to an expression
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Fig. 1. Analytical and simulation-based (sim) evaluation of an objective function.
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