Accepted Manuscript

Heat Transfer and Friction Factor Correlations Development for Solar Air Heater Duct Artificially Roughened with 'S' Shape Ribs

Khushmeet Kumar, D.R. Prajapati, Sushant Samir

PII: S0894-1777(16)30320-X

DOI: http://dx.doi.org/10.1016/j.expthermflusci.2016.11.012

Reference: ETF 8934

To appear in: Experimental Thermal and Fluid Science

Received Date: 15 July 2015
Revised Date: 9 November 2016
Accepted Date: 14 November 2016

Please cite this article as: K. Kumar, D.R. Prajapati, S. Samir, Heat Transfer and Friction Factor Correlations Development for Solar Air Heater Duct Artificially Roughened with 'S' Shape Ribs, *Experimental Thermal and Fluid Science* (2016), doi: http://dx.doi.org/10.1016/j.expthermflusci.2016.11.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Heat Transfer and Friction Factor Correlations Development for Solar Air Heater Duct Artificially Roughened with 'S' Shape Ribs

Khushmeet Kumar^{1*}, D.R. Prajapati² and Sushant Samir²

Abstract

This paper presents the experimental investigation for heat transfer and friction factor for an artificially roughned solar air heater duct with an aspect ratio of 12. Arc shape wire ribs arranged in 'S' shape having roughness parameters as relative roughness pitch (p/e) in the range of 4-16, relative roughness height (e/ D_h) in the range of 0.022-0.054, arc angle (α) of 30°-75°, relative roughness width (W/w) of 1-4 and Reynolds number (Re) ranges from 2400 to 20000. It was found that performance of roughned solar air heater duct is better than the performance of smooth duct for the range of roughness parameters investigated. Experimental results shows that maximum enhancement in Nusselt number (Nu) and friction factor (f) found to be at relative roughness width (W/w) value of 3, relative roughness (p/e) value of 8, arc angle (α) value of 60° and relative roughness height (e/ D_h) value of 0.043. Based on the data collected from the test runs for roughned duct for various combinations of the roughness parameters correlations were also developed for heat transfer and friction factor in terms of roughness parameters and operating parameter (Reynolds number).

Keywords

Solar air heater, artificial roughness, heat transfer, friction factor.

Nomenclature

A_c	surface area of absorber plate (m ²)	V	mean flow velocity in duct (m/s)
A_{o}	area of orifice meter (m ²)	h	heat transfer coefficient (W/m ² K)
C_p	specific heat of air (J/kg K)	Nu	Nusselt number
C_{d}	coefficient of discharge	Re	Reynolds number
D_h	hydraulic diameter (m)	$\Delta P_{\rm o}$	pressure drop across orifice plate
W	width of duct (m)	$(\Delta P)_d$	pressure drop across test section in duct
H	height of duct (m)	m	mass flow rate of air (kg/s)
W/H	aspect ratio of duct	Q_{u}	useful heat gain (W)
L	length of test section in duct (m)	T_{o}	air outlet temperature (K)
e	Roughness element height (m)	$T_{\rm i}$	air inlet temperature (K)
e/D_h	relative roughness height	T_{pm}	mean temperature of absorber plate (K)
p	pitch (m)	$T_{am} \\$	Mean temperature of air (K)
p/e	relative roughness pitch	Greek Sy	ymbols
f	friction factor	α	arc angle (°)
k	thermal conductivity (W/m K)	$\alpha/90$	relative arc angle

^{*}Corresponding author. Tel.: +91 9466955972, +919805222569;

E-mail address: Khush2k33@gmail.com (Khushmeet Kumar).

¹Research Scholar, Department of Mechanical Engineering, PEC University of Technology, Chandigarh (UT) – 160012 (INDIA)

²Department of Mechanical Engineering, PEC University of Technology, Chandigarh (UT) –160012 (INDIA)

Download English Version:

https://daneshyari.com/en/article/4992767

Download Persian Version:

https://daneshyari.com/article/4992767

<u>Daneshyari.com</u>