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A B S T R A C T

In the thermal radiation analysis via Monte Carlo method, the ray tracing algorithm often consumes a significant
fraction of CPU time. As such, an efficient grid traversal algorithm can considerably affect the performance of the
Monte Carlo method. This paper presents a new grid traversal acceleration algorithm by merging adjacent small
empty voxels in a preprocessing step due to the fact that larger empty space, named “macro-voxel”, allows for
traversing a ray over a large distance at a smaller cost. The proposed algorithm is validated theoretically, and the
results are examined for a gray box with diffuse surfaces. Timing results of the new algorithm are compared with
the USD method in a typical 3D radiation furnace with concave geometry and the speedup ratio of both the
macro-voxel algorithm and the USD method with respect to direct method are calculated for an optimal grid of
voxels. For the considered geometry, the macro-voxel algorithm is found to be clearly superior to the USD even if
the size of the problem is large and the geometry is not convex.

1. Introduction

Radiation is the dominant mode of energy transfer in high tem-
perature environments including combustion chambers and furnaces
and in the semiconductor industry for thermal processing of wafers
[1–2]. The Monte Carlo method [3–4] is one of the most versatile and
widely used numerical tools in calculation of the radiative distribution
factors [4] among enclosure surfaces. Practical applications of en-
closures such as radiation furnaces involve complex three-dimensional
geometries and surfaces with complicated surface properties. Currently
due to rapid growth in computer speed, memory and availability, the
Monte Carlo method has evolved from an expensive and approximate
estimation tool to a more feasible accurate and cost-effective approach.
As each ray bundle can independently be considered in the Monte Carlo
calculations, the method is quite suitable for parallel programming with
today's more powerful computers. The disadvantage of this method is
that, as a statistical method, it is subject to statistical error.

Monte Carlo method is widely used in solar energy applications, as
well. Zhou and Qiu [5] utilized the Monte-Carlo integral method to
calculate the direct exchange area in the zone method for the modeling
and simulation of the radiation transfer in an industrial furnace. The
Monte Carlo method was used by Mazumder and Kersch [1] to model
radiative transport in rapid thermal processing (RTP) and thermal
chemical vapor deposition (RTCVD) reactors. The basic algorithm and a

modified form of the binary spatial partitioning (BSP) algorithm was
implemented to speed up ray tracing by at least a factor of 3.

Wang [6] developed an accurate stochastic algorithm to estimate
view factors between canyon facets in the presence of shade trees and
considered the potential of shade trees in mitigating canyon surface
temperatures as well as saving of building energy use.

In the other work, Yi et al. [7] developed the Monte Carlo method
for solving transient radiative transfer in one-dimensional scattering
media with arbitrary distributions of refractive index exposed to a
collimated short pulse-laser irradiation at one of its boundaries in
which time shift and superposition principle was applied. Also, Kovta-
nyuk et al. [8] applied Monte Carlo method in the coupled radiati-
ve–conductive heat transfer mode in a chamber by two specularly and
diffusely reflecting boundaries with anisotropic scattering medium. In
this case a recursive Monte Carlo method was proposed and then the
diffusion approximation of the radiative transfer equation was utilized
to solve radiative heat transfer equation and an equation of the con-
ductive heat exchange. Mirhosseini and Saboonchi [9] used the Monte
Carlo method to determine view factor for the plate including strip
elements to circular cylinder as a case in heating and cooling processes
in material processing. The analysis displayed the differences between
the numerical results obtained and analytical solutions and they in-
dicated that smaller elements require more effort to obtain an accurate
view factor.
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The heart of MCRT method is the ray tracing algorithm which the
central computational issue is the determination of the intersection
point between an infinite ray and a large set of discrete surface
boundary elements. Thus, without doubt, acceleration of ray tracing in
large geometries with a large number of boundary faces is essential. Of
all the acceleration techniques reviewed by Arvo and Kirk [10], two
general techniques are the most promising: bounding volumes and
spatial subdivision. According to Arvo and Kirk [10], defining bounding
volumes for groups of arbitrary objects would be difficult and probably
not improve the efficiency especially in a domain with obstructions
which several boxes will have to be checked for a given ray to find the
nearest intersection point. Spatial subdivision works with a different
philosophy. Two of the most popular non-uniform spatial subdivision
techniques are the Octree [11] and the binary space partition (BSP) tree
[12] that subdivides three-dimensional space into a finite, non-over-
lapping set of voxels. Octrees are created by recursively dividing a large
box around the geometry into eight subordinate octants until the re-
sulting “leaf” voxels meet the prescribed termination criteria, such as a
certain maximum number of surfaces per voxel. A BSP tree is created by
recursively bisecting the computational domain at each level of the tree
into two pieces using a separating plane. For convenience, the planes
are often aligned with the coordinate axes. In uniform spatial division
(USD) [11,13] a regular three-dimensional grid of voxels of uniform
size is superposed on the computational domain. Although the geo-
metry is not divided as efficiently as the Octree and BSP methods, the
next voxel is found very efficiently by incremental calculations. The
USD algorithm has been used by Zeeb [14] for Monte Carlo calculations
in nonparticipating media enclosed by large, complex geometries. Four
complex geometries containing between 1000 and 5000 surfaces were
examined for efficiency of the proposed algorithm in determining in-
tersection points. It was shown that a good first estimate of the optimal
grid is 15,000 voxels. The maximum obtained speedup ratio in this
study was as great as 81. The proposed ray tracing algorithm was found
to be 33% to 45% faster than the earlier version of ray-plane inter-
section which focused on the point of intersection instead of calculating
the intersection distance.

Mazumder [15] examined BSP and volume-by-volume advancement
(VVA) algorithms to accelerate ray tracing for two classical problems,
namely an open box, and a box in a box, in both two-dimensional and
three-dimensional enclosures. The VVA algorithm works in such a way
that traces a ray from its emission point and follows up its advancement
through volumetric mesh until a legitimate intersection point is found.
The VVA algorithm obeyed the scaling law as M1/2 whereas the CPU
time of the BSP method scaled super-linearly. The efficiency of the VVA
algorithm was found to be superior in comparison with the BSP algo-
rithm, especially when obstructions were placed in the geometry. The
maximum computational gain in case of using VVA algorithm was a
factor of 334 whereas the computational gain using the BSP algorithm
was found to be a factor of 52. The VVA algorithm is easy to implement
without need to any preprocessing steps. The BSP algorithm, without
any adaptation, will result in an unbalanced tree, which can easily lead
to costly, incoherent memory accesses and cache thrashing as the en-
closure boundary faces are increased.

Naeimi and Kowsary [16] developed a new ray-object intersection
algorithm based on the well-known Simplex method from linear pro-
gramming. In this algorithm, feasible region is defined by a set of plane
equations of enclosure boundaries. Intersection point is the one that
maximize the line equation of the emitted ray as the objective function.
The advantage of this ray-object intersection method was that it is easy
to implement and by using this algorithm number of objects which must
be checked in complex geometries will be reduced considerably al-
though the computation time of this method may be a bit higher than
the conventional time for simple objects.

In more recent work an optimized and accurate Monte Carlo method
was examined by Naeimi and Kowsary [17] for simulation of 3D
complex radiative enclosures. The performance of the Monte Carlo

method was enhanced by implementing efficient algorithms to find
location of emission and direction of emission. Next, the best accel-
eration ray tracing algorithm was determined by comparing timing
results of the USD, the BSP, the Simplex and the VVA algorithms while
the constrained maximum likelihood estimation was used to enhance its
accuracy. Although the USD algorithm was found to be 20% to 32%
slower than the VVA algorithm, it is very easy to implement with re-
spect to VVA algorithm in the Monte Carlo code.

In this article, the macro-voxel algorithm is introduced for the first
time and is discussed in significant detail. Timing results are computed
for a typical three-dimensional radiation furnace composed of several
tens of thousands of boundary faces to demonstrate the efficiency of the
new algorithm. This in-depth study is completed with recommendations
about optimally applying the proposed algorithm to large radiative
geometries.

2. Method of analysis

As a case study, heat exchange in a black box and a typical three-
dimensional radiation furnace with diffuse gray surfaces is considered
using the Monte Carlo method by estimating “distribution factors” [4].

Radiation transport between one surface or volume element to one
of other surfaces or volume elements of the enclosure can be described
by a radiation distribution factor, Dij, which is defined as the fraction of
the total radiation emitted from surface element i that is absorbed by
surface element j, due to both direct radiation and all possible reflec-
tions within the enclosure. If the estimated distribution factor and the
exact distribution factor are denoted by Dij and Dij, respectively, they
may be related as

≈ =D D N Nij ij ij i (1)

where Ni is the number of emitted bundles from surface i, and Nij is the
number of these bundles which are absorbed by surface j, directly or
indirectly. Nij is calculated using the Monte Carlo method.

Total diffuse-specular radiation distribution factor obeys the con-
servation of energy, reciprocity and closure relations. Applying these
principle relations, the net radiative heat transfer rate on surface ele-
ment i may be written as

∑= −
=

Q ε A δ D σT( )i i i
j

M

ij ij j
1

4

(2)

where M is the total number of boundary faces, and εi and Ai are the
hemispherical, total emissivity and surface area of emitting surface. Tj is
the temperature of jth face, and δij is the Kronecker delta.

2.1. The Monte Carlo ray tracing method

Monte Carlo ray tracing method is a statistical approach in which
advancement of any emitted energy bundle is followed from its emis-
sion point until it is absorbed either after direct travel or after any
number of reflections or until it leaves the enclosure.

2.1.1. Location of emission point
In order to estimate the radiation distribution factors we need to

determine emission point for each energy bundle. This emission point is
obtained from random surface emission routine by Turk [18]. By using
two uniformly distributed random numbers between zero and one, R1

and R2, and three vertices of triangle, V1 ,V2 and V3, following relations
are used to determine the emission point, R0:
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In order to reduce the overhead of calculations of the code each
boundary face is divided into triangles and considered as a constant
temperature surface in thermal radiation calculations. This separation
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