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A B S T R A C T

A simple model of chemical reactions for heat fluid flow in the stagnation-point region of a flat sheet is con-
structed. It is assumed that the heterogeneous reactions taking place on the wall surface are given by isothermal
cubic autocatalator kinetics and the homogeneous reactions occurring in the ambient fluid are governing by first
order kinetics. The steady-state problem is then reduced to a set of coupled ordinary differential equations via
similarity reduction in the case that the diffusion coefficients of reactant and autocatalyst are equal. The multiple
solutions of this system are obtained numerically with the help of hysteresis bifurcations.

1. Introduction

Catalysts are usually expected to improve on efficiencies of chemical
reactions in many industrial processes. In earlier studies, researchers
[1–5] mainly paid their attention to understand mechanisms of catalyst-
driven chemical aspects of heterogeneous reactions on the catalyst
surface. While Williams et al. [6], Song et al. [7] and Williams et al. [8]
noticed that the chemical reaction could occur not only on the catalyst
surface (heterogeneous reactions), but also in the bulk (homogeneous
reactions). Inspired by Williams et al. [6], Chaudhary and Merkin
[9,10] established a mathematical model on homogeneous-hetero-
geneous reactions near a forward two-dimensional stagnation-point of a
flat surface with the assumption that the autocatalytic reaction is iso-
thermal cubic. Note that the homogeneous-heterogeneous model is
usually associated with the stagnation flows near a prescribed geo-
metry, whose configuration can be found in the papers of Hsiao
[11–13]. It is known that when chemical reaction processes operating
in the combined forced and free convective flow regime, the overall
mass and/or heat transfer rates could be influenced significantly, or
vice versa, the overall reactant conversion rates may be affected sig-
nificantly by transport phenomena. Therefore, a detailed analysis for
accurate evaluation of the transport effects on performance of various
processes in the presence of both heterogeneous and homogeneous re-
actions in a combined flow regime is very desirable. As far as we know,
such analyses have seldom been done in the literature. This work tries
to meet such a need.

2. Mathematical descriptions

Following Chaudhary and Merkin [9,10], we assume that the re-
action in the bulk is isothermal cubic autocatalytic, given by

+ → =A B B k C C2 3 , rate ,a b1
2 (1)

while on the catalyst surface, the reaction is single, isothermal, first
order, governed by

→ =A B k C, rate ,s a (2)

where A and B are two different kinds of autocatalysts, Ca and Cb are
their concentrations respectively. k1 and ks are constants associated
with the homogeneous and heterogeneous reactions. To satisfy physical
requirements, it is assumed that the reactant B does not exist in the
external flow and the reactant A has a constant concentration Ca0. Note
that the correlation Eq. (1) indicates that the reaction rate at far field is
zero, so does it at the outer edge of the boundary layer. We then assume
that the chemical reactions cause heat release, which means that the
effects of thermal expansion will not be ignored in the boundary-layer
due to the reactions. With those assumptions, we write the governing
equations in the following forms (refer to [9,14]):
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subject to the following boundary conditions
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where u and v are velocity components in x- and y-axes respectively, p is
the pressure, ν is the kinematic viscosity, T is the fluid temperature, α is
the thermal diffusivity, ΔHh is the homogeneous heat reaction, δA is the
stoichiometric coefficients for heterogeneous reaction of species A, ρ is
the fluid density, Cp is the heat capacity, DA and DB are the respective
diffusion coefficients of species A and B, kT is the thermal conductivity,
and a is a constant.

To make Eqs. (3)–(7) dimensionless, we define the following simi-
larity variables
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This leads to the reduced governing equations for the momentum,
thermal energy and chemical reaction in the following form

‴ + ″ + − ′ =f f f f1 0,2 (10)
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where Pr is the Prandtl number, RH is the homogenous reaction heat
parameter, Sc is the Schmidt number, K is the strength coefficient of the
homogenous reaction, ε is the ratio of the diffusion coefficients, KT is
the thermal conductivity due to homogenous reaction, KS is the strength
parameter due to heterogeneous reaction, which are defined by
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In practical, it is expected that the diffusion coefficients of reactants
A and B are comparable. We therefore assume that DA and DB are equal,
which is not against physical requirement (refer to [9]). In such case,
we can combine Eqs. (12) and (13) to write

+ =ϕ η η( ) ϑ( ) 1. (16)

From above equation, it is known that we only need to calculate one

function (ϕ(η) or ϑ(η)), the other equation can be obtained via Eq. (16)
correspondingly. We substitute Eq. (16) into Eqs. (11) and (12), ob-
taining
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3. Result analysis

Solutions to Eqs. (10), (17) and (18) can be easily obtained by nu-
merical techniques. Here we use the fourth-order shooting technique to
give solutions with the integration step Δη=0.05 and the computa-
tional error being less than 1.0×10−8 for all considered cases. Further
to check the accuracies of our results, we compare f″(0) with published
results, very good agreement is found, as shown in Table 1. We also
notice that our results for ϕ(0) agree well with those given by
Chaudhary and Merkin [9] (which are obtained by depicting points
from their Fig. 1), as shown in Table 2.

We start our discussion by considering solution diversities of the
nonlinear systems. It can be seen from Fig. 1, for a prescribed value of
Ks, solutions for θ(η) and ϕ(η) could exist for a large range of K. Par-
ticularly, multiple solutions are in existence when the set values of Ks

and K are properly chosen. It is also found in the figures that for a
sufficiently strong surface reaction rate Ks, the temperature on the
surface θ(0) decreases monotonously as K enlarges. While as Ks be-
comes weaker, a bifurcation point (Ks

b) appears. Multiple solutions can
be expected for Ks < Ks

b in a certain range of K. Our computational
results shows that the maximum value of Ks

b is slightly greater than 0.1
for Sc=0.1. One can also find from the figures that when there is no
bulk (homogeneous) reaction and K=0, the surface reaction can be
persisted with the concentration of reactant Ca=Ca

∗ being lower than
the ambient value. It is also revealed from the figures that ϕs tends to 1
as Ks approaches to 0.

We then fix K and check the influence of Ks on the surface tem-
perature θ(0). It is seen from Fig. 2 that when K is small (e.g. K=2,
Fig. 2a), only unique solution can be found for different values of Ks. It
is also seen from Fig. 2, solutions could be possible for Ks < 0, which
correspond to the purely homogenous reaction. Such solutions could be
used to describe the autoignition of the system in practical. In this si-
tuation, the autocatalytic homogeneous reaction is strong enough to
keep itself running. Therefore, the autocatalyst due to the first-order
surface reaction is not necessary to be fed into this system. As K be-
comes sufficiently large, multiple solutions start to appear. The region
of Ks for existence of multiple solutions enlarges continuously as K in-
creases, as shown in Fig. 2b–d. Physically, one knows that the di-
mensionless concentrations of species ϕ must be less than 1 due to the
relation defined in Eq. (16). As a result, solutions for ϕ(0) > 1 (cor-
responding to θ(0) > 1.7529551 in the figures) have no real physical
meaning. We further find that the surface temperature θ(0) with phy-
sical sense (the lower branch) decreases with Ks increasing for any
prescribed value of K.

Mathematically, the bifurcation point is of practical interest. It is
usually a critical point corresponding to solutions with different beha-
viours. As shown in Fig. 3, the hysteresis point bifurcation for θ(0) is
illustrated with the upper line corresponding to the upper turning

Table 1
Comparison of f″(0) with the previous works.

Hiemenz [15] 1.2326
Wang [16] 1.232588
Kimiaeifar et al. [17] 1.23258762
Bachok et al. [18] 1.2325877
Present work 1.2325877
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