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A B S T R A C T

In phase-change heat transfer, it is possible that a large amount of heat is transferred with a relatively small flow
rate of working fluid because a large amount of latent heat is exchanged during the phase change process.
Therefore, the phenomenon is observed in various industries. However, it is difficult to systematically investigate
the phenomenon only by experiment, consequently, it is important to conduct a relevant numerical study si-
multaneously. In the numerical analysis, it is crucial to carefully address the thermofluidic discontinuity at the
phase interface. In order to calculate the mass and energy exchange through the phase interface, various
methodologies have been proposed, such as utilizing the temperature difference with the saturation temperature
or the heat flux around the interface. In this study, based on the VOF method, numerical phase-change models
proposed by Lee, Rattner et al., and Sun et al. were investigated and compared through the Stefan vaporization
problem.

1. Introduction

Phase change is the phenomenon of modification of a fluid's phy-
sical phase caused by thermal conditions. Because a large amount of
latent heat is transferred during the phase changing process, it is fea-
sible that a large amount of thermal energy is transferred at a relatively
small flow rate. Therefore, the phase changing phenomenon has been
widely applied in various industrial applications such as power plants,
refrigeration systems, desalination plants etc. However, because the
shape of the phase interface continuously deforms as a result of heat
transfer and the deformation is significantly chaotic in certain cases,
numerical or analytical approach has been applied to limitedly simple
phase-changing problems and a significant number of the previous
studies of phase-change heat transfer has largely been carried out by the
experimental approach notwithstanding the high costs. A variety of
experimental techniques using high-speed camera, infrared image
processing, and transparent electrode heater have been developed over
the last decade. Because of this technical development, it has become
possible to explore the phenomenon at a deeper physical consideration.

The demand for direct numerical analysis of the phase changing
process, however, is still increasing because of the advantage that it
allows one to observe the inside of the phenomenon without any arti-
ficial interference. However, because of the complexities of the phe-
nomenon and resulting high computing costs, numerical studies are
limited to highly straightforward phase-changing problems; moreover,

there never a consensus on the accuracy of the numerical solution. To
enable the use of numerical tools for the purpose of reproducing the
existing experimental results as well as solving a variety of phase
changing situations appearing in real engineering problems, the char-
acteristics of the numerical model for phase changing process must be
examined in advance through a simple phase-change problem.

A number of numerical phase-change models have been presented
and are steadily undergoing modifications. The existing numerical
phase-change models can be classified into models using the difference
between cell temperature and saturation temperature (Lee [1] and
Rattner et al. [2]) and models using the heat flux data around the in-
terface cell (sharp interface model [3] and Sun et al. [4]). All of these
phase-change models predict the phase change amount using the heat
transfer information, and consider the energy source as the latent heat
relevant to the mass change in the interface cell when solving the en-
ergy conservation.

In the case of the Lee model [1], which has been widely used be-
cause of its simplicity, the inconsistency of the numerical coefficient
that directly affects the prediction of the amount of phase change poses
a challenge. It was reported that a wide range of this coefficient—from
10−1 to 108 [5–10]—was applied on a case-by-case basis. Meanwhile,
Rattener et al. [2] proposed a new model that includes the computing
time interval for predicting the phase change amount. They suggested
the maximum allowable time step size considering thermal diffusion
stability. Sun et al. [4] developed a new numerical phase-change model
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that is a control-volume-based sharp interface model, which predicts
the phase change amount using the heat flux data in the computational
cell including the gas-liquid interface.

In this study, the existing Lee, Rattner, and Sun models are applied
to the one-dimensional Stefan vaporization problem that does not in-
clude nonlinear convection terms and thus has a simple exact solution
[3,11,12]. First, the characteristics of each model will be briefly in-
troduced. The dependency of the numerical coefficient for the Lee
model and time step dependency of the Rattner model will be ad-
dressed. The time progressions in the position of the phase interface are
compared between the phase-change models. Error analysis using the
exact solution will be introduced.

2. Numerical analysis

2.1. Governing equations

For the one-dimensional Stefan problem, the conservation equations
of volume fraction and energy after omitting the convection terms are
used as a governing equation set:
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where α is volume fraction, t is time, ṁ is mass change rate per unit
volume, ρ is density, h is enthalpy, λ is thermal conductivity, T is
temperature, S is energy source per unit volume, and subscripts v and l
represent vapor and liquid respectively.

The enthalpy of the interface cell where the vapor and liquid coexist
defined by the following Eq. (3):
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where hl and hv are defined by Eqs. (4) and (5), respectively, and Tsat
represents the saturation temperature.
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where Cp is the specific heat under constant pressure condition.
The values of density and thermal conductivity applied in the en-

ergy conservation Eq. (2) are the weighted averages determined using
the volume fraction of each phase.
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The ṁ (mass change rate per unit volume) and S (energy source per
unit volume) in the governing Eqs. (1) and (2) are differently obtained
for each phase-change model.

2.2. Phase-change models

2.2.1. Lee model
In the Lee model, the mass change rate per unit volume is obtained

using the difference between the cell temperature and saturation tem-
perature and the volume fraction following Eq. (8):
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where r is a numerical coefficient with s−1 dimensions. As mentioned
previously, significantly different values of r were used on a case-by-
case basis. A few researchers defined r as the mass transfer time re-
laxation [13] or empirical coefficient [8].

In actuality, the temperature at the phase interface is to be main-
tained as the saturation temperature. However, as the numerical si-
mulation progresses, the cell temperature in the interface cell tends to
deviate significantly from the saturation temperature as a result of the
heat transfer between the saturated and unsaturated phases. To com-
pensate for this and maintain the cell temperature of the interface cell
to be equal to the saturation temperature, the energy source term is
added to the right-hand side of energy conservation Eq. (2). Its mag-
nitude is determined by the following Eq. (9):
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where hlv is the latent heat for the phase change.

2.2.2. Rattner model
To overcome the solution's dependency on the numerical coefficient

in the Lee model, the following phase-change model was proposed by
Rattner et al. [2].
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where, S1, S2, and S3 are defined as follows.
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The parameter S1 is the magnitude of the heat source calculated
from the phase change amount for a single computing time interval
(Δt); the phase change amount is obtained from the deviation between
the cell temperature and saturation temperature. The parameter S2
represents the limit of the energy source because it is not practicable for
the phase change amount exceed the amount of the saturated phase
remaining in the cell. The parameter S3 is a device for numerical sta-
bility that limits the growth rate of the interface and is known as the
Cournat-Friedrichs-Lewy (CFL) condition.

The mass change rate per unit volume to be applied to the volume
fraction conservation Eq. (1) is calculated by the following Eq. (14).
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This model successfully removed the ambiguous numerical coeffi-
cient in the Lee model; however, there is a likelihood of time step de-
pendency because of the inclusion of the computing time interval for
obtaining the phase change amount, as illustrated in Eqs. (11)–(13).
Rattner et al. [2] suggested the following maximum allowable time step
size considering the thermal diffusion stability:
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where Δx is the grid size.
In this study, when applying the various time step sizes, the accu-

racy of this model is addressed through one-dimensional Stefan pro-
blem.

2.2.3. Sun model
To overcome the dependency of the numerical coefficient for the

Lee model and time step size for the Rattner model, Sun et al. [4]
suggested the numerical phase-change model that uses the total heat
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