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A B S T R A C T

In the paper we solve the one-phase inverse problem of alloy solidifying within the casting mould, including the
shrinkage of metal which results from the difference between densities of the liquid and solid phases. The process
is modeled by means of the solidification in the temperature interval basing on the heat conduction equation
with the source element enclosed, whereas the shrinkage of metal is modeled by the proper application of the
mass balance equation. The investigated inverse problem consists in reconstruction of the heat transfer coeffi-
cient on the boundary of the casting mould on the basis of measurements of temperature read from the sensor
placed in the middle of the mould. Functional expressing the error of approximate solution is minimized with the
aid of Artificial Bee Colony Optimization algorithm.

1. Introduction

The inverse problem is a task of reconstructing some parameters of
the model on the basis of observations made on the modeled pro-
cess [1–5]. It is called an inverse problem because, while solving it, we
start with the results and we intend to determine the causes. This kind
of problem is therefore very important from the practical point of view
because it gives the possibility to control the investigated process, that
is to select the parameters influencing the run of the process to achieve
the product in the expected form and of the required quality. Authors of
this paper considered already the inverse problems connected with the
heat conduction. Papers [6–8] present some methods developed for
solving the two-dimensional inverse Stefan problem and the three-di-
mensional inverse continuous casting process.

In the inverse problems considered by us till now we assumed the
perfect contact between the cast and the casting mould. However in the
real processes, due to the difference between densities of the liquid and
solid phases, the shrinkage of metal often appears during the solidifi-
cation. Then, the air-gap may form between the cast and the casting
mould. The created air-gap generates in turn the interfacial thermal
resistance between the mould and the cast determining the mould heat
flux which, in result, decreases the quality of the product causing some
defects, such as the cracks or oscillation marks [9]. Therefore, it is very
important to undertake some efforts leading to control this phenom-
enon.

Nawrat and Skorek in papers [10,11] investigated the heat re-
sistance of the air gap created between the ingot and crystallizer in the

continuous casting process. For modeling the solidification process they
used the Stefan problem and they determined the heat conduction
coefficient of the gap on the basis of temperature measurements in the
crystallizer walls. In works [12,13] the heat resistance of the gap be-
tween the mould or the crystallizer and the ingot was also determined,
whereas in papers [14,15] the interfacial heat transfer coefficient be-
tween the form and the cast was computed. Authors of the current
paper investigated already the phenomenon of metal shrinkage in the
solidification process in papers [16–18]. In the first two works the so-
lidification of the pure metal was considered and modeled by means of
the one-dimensional Stefan problem, whereas in [18] the solution
technique for solving the direct problem of the alloy solidifying within
the casting mould was tested. The investigated process was modeled
there by means of the solidification in the temperature interval basing
on the heat conduction equation with the source element enclosed,
which includes the latent heat of fusion and the volume contribution of
solid phase [19–22], whereas the shrinkage of metal was modeled by
the proper application of the mass balance equation. The model of so-
lidification in the temperature interval assumes the existence of three
states in the solidifying material, that is the liquid phase, solid phase
and the intermediate zone (called the mushy zone) between them,
where the both phases coexist [23]. Therefore this model is often used
for modeling the solidification of alloys, in contrast to the Stefan model
applied for modeling the solidification of pure metals, in which the li-
quid and solid phases are sharply separated by the interphase surface.

Similar approach as in [18] is applied in the current paper. We
examine here the one-phase inverse problem of alloy solidifying within
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the casting mould including the change of cast size caused by the ma-
terial shrinkage. The investigated inverse problem consists in re-
construction of the heat transfer coefficient on the boundary of the
casting mould on the basis of measurements of temperature read from
the sensor placed in the middle of the mould. Solution of the corre-
sponding direct problem is technically based on the finite difference
method supplemented by the procedure of correcting the field of tem-
perature in the vicinity of the liquidus and solidus curves [21,22,24].
Next, on the ground of the measurement values the functional expres-
sing the error of approximate solution is formulated and minimized
with the aid of Artificial Bee Colony Optimization algorithm [25–27] in
order to select the value of sought heat transfer coefficient so that the
reconstructed values of temperature approximate as best as possible the
measured values.

2. Formulation of the problem

We consider the solidification of a plate of the following dimen-
sions: thickness d(t), width h and height l (we assume d(t) ≪ h and d(t)
≪ l). The solidifying material occupies region Ω={(x,t) : x ∈ (0,d(t)), t
∈ (0,t*)} divided into three subregions: taken by the solid phase, liquid
phase and the mushy zone where the both phases coexist. The cast is
bounded by the casting mould, the region of which is denoted by Ωm=
{(x,t) : x ∈ (d0,b), t ∈ (0,t*)}. While the solidification process proceeds,
the air gap creates between the cast and the casting mould. Thus, in the
initial moment d(0)=d0 and next, the cast boundary d(t) moves and
forms the gap. The scheme of investigated situation is presented in
Fig. 1.

Neglecting the natural convection in the liquid phase, as well as the
strain energy of the mushy zone, we assume that the temperature field

in region Ω is described by the following heat conduction equation

∂
∂

+ ∂
∂

= ∂
∂

+
∂

∂
c ρ T x t

t
v T x t

x
λ T x t

x
L ρ

f x t
t

( , ) ( , ) ( , ) ( , )
,x

s
2

2 (1)

for (x,t) ∈Ω, where c, ρ and λ are the specific heat, mass density and
thermal conductivity coefficient, respectively, vx means the velocity
vector, L denotes the latent heat of solidification, fs describes the vo-
lumetric solid phase fraction, T is the temperature, and finally, t and x
refer to the time and spatial variables. The volumetric solid state frac-
tion depends on the temperature, so we may write
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Substituting relation (2) into Eq. (1), after simple transformation we
get the following form of Eq. (1):
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for (x,t) ∈Ω, where
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is called as the substantial thermal capacity. The above equation de-
scribes the heat conduction in the full homogeneous region (in the solid
phase, in the two-phase zone and in the liquid phase).

Since function fs, describing the volumetric solid state fraction, must
satisfy the equalities

= =f T f T( ) 0 and ( ) 1,s L s S

where TL and TS denote the liquidus and solidus temperatures,

Nomenclature

b Length
cl Specific heat of the liquid phase
c Specific heat
C Substantial thermal capacity
D Dimension of minimized problem
d Thickness of the plate
fs Volumetric solid state fraction
h Height of the plate
ΔHi Change of enthalpy
J Minimized functional
l Width of the plate
L Latent heat of solidification
lim Number of corrections of the source location
m Mass of the alloy
MCN Maximal number of cycles
N Number of measurements
P Probability of choosing the source of nectar
R Thermal resistance
SN Number of bees (sources of nectar)
t Time
t* Final time
T Temperature
TL Liquidus temperature

TS Solidus temperature
T∞ Ambient temperature
Ui Measured temperature
vx Velocity vector
Vj Control volume
x Spatial variable
xbest Best located bee

Greek symbols

α Heat transfer coefficient
δ Relative percentage error
Δ Absolute error
λ Thermal conductivity
ρ Mass density
ξl(s) Location of TL(S)
Ω Considered region

Subscripts

l Liquid phase
m Mould
mz Mushy zone
s Solid phase
0 Initial

Fig. 1. Region of the problem.
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