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A B S T R A C T

We consider the inverse problem of determining the time-dependent thermal conductivity and the transient
temperature satisfying the heat equation with initial data, Dirichlet boundary conditions, and the heat flux as
overdetermination condition. This formulation ensures that the inverse problem has a unique solution. However,
the problem is still ill-posed since small errors in the input data cause large errors in the output solution. The
finite difference method is employed as a direct solver for the inverse problem. The inverse problem is recast as a
nonlinear least-squares minimization subject to physical positivity bound on the unknown thermal conductivity.
Numerically, this is effectively solved using the lsqnonlin routine from the MATLAB toolbox. We investigate the
accuracy and stability of results on a few test numerical examples.

1. Introduction

In inverse problems, the unknown densities or distributed source, or
the coefficients involved in the governing partial differential equation
or in the boundary conditions for a mathematical model under
investigation are sought from additional information on the main
dependent variable solution of the original direct initial boundary
value problem, [11]. In particular, the inverse problem of identifying
the thermal diffusivity/conductivity from boundary data (temperature
and partial heat flux) has been investigated widely by many researchers
in the past, see [1-3,5-8,12] to mention only a few. In this paper, the
novelty consists in the development of a convergent numerical optimi-
zation method for solving this nonlinear but well-posed inverse
coefficient problem for the heat equation. Numerically, the implemen-
tation is realised using the MATLAB toolbox routine lsqnonlin.

The paper is organized as follows. In Section 2, the mathematical
formulation of the inverse problem is presented. In Section 3, the
numerical solution of the direct problem is based on the finite
difference method with the Crank-Nicolson scheme. In Section 4, the
minimization algorithm to solve the inverse problem is presented. The
numerical results are discussed in Section 5. Finally, conclusions are
highlighted in Section 6.

2. Mathematical formulation

In the domain QT={(x,t)|0< t< T, 0< x< L}, we consider the

inverse problem given by the parabolic heat equation
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with known heat source f(x,t), unknown temperature u(x,t) and
unknown thermal conductivity a(t)> 0, t ∈ (0,T], subject to the initial
condition

u x ϕ x x L( , 0) = ( ), ∈ [0, ], (2)

the Dirichlet temperature boundary conditions

u t μ t u L t μ t t T(0, ) = ( ), ( , ) = ( ), ∈ [0, ],1 2 (3)

and the Neumann heat flux overdetermination condition

a t u t μ t t T( ) (0, ) = ( ), ∈ [0, ].x 3 (4)

The uniqueness of solution of the inverse problems (1)–(4) has been
established in [6] and reads as follows.
Theorem 1. (Uniqueness of the solution).. If 0< μ3 ∈ C[0,T], then a
solution a t u x t H T H Q( ( ), ( , )) ∈ [0, ] × ( )α α α

T
1+ /2 2+ ,1+ /2 , for some α ∈

(0,1), a(t)> 0 for t ∈ [0,T], to the problem (1)–(4) is unique.

In this theorem, H1+α/2[0,T] denotes the space of Hölder continu-
ously differentiable functions on [0,T] with exponent α/2. Also,
H Q( )α α

T
2+ ,1+ /2 denotes the space of continuous functions u along with

their partial derivatives ux, uxx, ut in QT , with uxx being Hölder
continuous with exponent α in x ∈ [0,L] uniformly with respect to t ∈
[0,T], and with ut being Hölder continuous with exponent α/2 in t ∈
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[0,T] uniformly with respect to x ∈ [0,L]. Lower-order terms
b x t x t c x t u x t( , ) ( , ) + ( , ) ( , )u

x
∂
∂ , with b and c known functions, can also

be added to the right-hand side of Eq. (1), with no qualitative change in
both analytical and numerical analyses, [6].

3. Numerical solution of direct problem

In this section, we consider the direct initial boundary value
problem given by Eqs. (1)–(3). We use the finite-difference method
(FDM) with a Crank-Nicholson scheme, [10], which is unconditionally
stable and second-order accurate in space and time. The discrete form
of the direct problem is as follows. We denote u(xi,tj)=ui,j,a(tj)=aj, and
f(xi,tj)= fi,j, where xi= iΔx,tj= jΔt for i M j N= 0, , = 0, , and

x tΔ = , Δ =L
M

T
N
. Then the problems (1)–(3) can be discretised as
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At each time step tj+1, for j N= 0, ( −1), using the Dirichlet
boundary conditions Eq. (7), the above difference equation can be
reformulated as a (M−1)×(M−1) system of linear equations of the
form,

D Eu u b= + ,j 1 j
j

+ (8)

where
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The numerical solution for heat flux in Eq. (4) on the interval t ∈
[0,T] is given by

μ t a t u t

j N

( ) = ( ) (0, ) = ,

= 0, .
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Fig. 1. The exact (Eq. (20)) and numerical solutions for the heat flux (Eq. (4)), for Example 1 with M=N ∈{10,20,40}, for the direct problem.
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Fig. 2. Objective function (11), for Example 1 with p ∈{0,5%,10%} noise.
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