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ARTICLE INFO ABSTRACT

The IDEAL algorithm is an efficient and robust pressure-velocity coupling algorithm, which has been applied in a
variety of fluid flow and heat transfer problems. However, the further development of the IDEAL algorithm
encounters with two key issues: it is hard to be mastered by other researchers and difficult to be extended to
complex engineering problems. In order to overcome these two issues, the IDEAL algorithm is implemented in
the world's most widely used open source CFD software - OpenFOAM. In that way, it is convenient for any
researcher to employ the IDEAL algorithm to solve complex fluid flow problems. Then, the performance of
IDEAL algorithm is analyzed with focus on complex steady-state incompressible fluid flow problems. The results
indicate that the IDEAL algorithm is superior to the SIMPLE and SIMPLEC algorithms in convergence and ro-
bustness for complex cases. In particular, the IDEAL algorithm can reach convergence, whereas the SIMPLE and
SIMPLEC algorithms cannot obtain convergent solution in some cases. This research lays a foundation for a
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wider application of the IDEAL algorithm in complex engineering problems.

1. Introduction

The SIMPLE [1] (Semi Implicit Method for Pressure Linked Equa-
tions) algorithm is a pressure correction algorithm proposed by Pa-
tankar and Spalding in 1972. It is the main method for the numerical
calculation of incompressible fluid flow and heat transfer problems. The
SIMPLE algorithm introduces two basic assumptions. One is that initial
velocity and pressure fields are assumed independently, which means
that SIMPLE does not reflect the internal relation between the initial
pressure and velocity. The other is that the influence of the neigh-
boring-grid velocity corrections is ignored in the process of solving the
pressure correction. These two assumptions do not affect the calcula-
tion results, but significantly affect the convergence rate of numerical
calculation. In order to reduce the defects caused by these two as-
sumptions, more than 10 variants of SIMPLE, such as SIMPLER [2],
SIMPLEC [3] and PISO [4], are available in the literature. However,
there is no algorithm that has completely overcome the two assump-
tions.

In 2008, Sun et al. [5,6] proposed the IDEAL algorithm (Inner
Doubly-iterative Efficient Algorithm for Linked-equations) on the basis
of the CLEAR algorithm [7,8]. In the IDEAL algorithm, two inner

iterative calculations for the pressure equation are performed at each
iteration level. The first inner iteration for the pressure equation is used
to overcome the first assumption of the SIMPLE algorithm. The second
inner iteration for the pressure equation is used to overcome the second
assumption of the SIMPLE algorithm. Thus, coupling between the ve-
locity and pressure could be fully satisfied, which greatly improves the
convergence and stability of calculation process.

At present, the IDEAL algorithm has been successfully extended to
structured and unstructured grids. Sun et al. implemented this algo-
rithm on rectangular coordinate staggered grid [9], rectangular co-
ordinate collocated grid [10], and body-fitted grid [11]. The perfor-
mance of the IDEAL algorithm on these three structured grid systems is
systematically compared with many other widely used algorithms,
which proved the superiority of the IDEAL algorithm in convergence
and robustness. Ding and Sun [12] extended the IDEAL algorithm to
two-dimensional unstructured triangular grids. The results show that
the IDEAL algorithm based on unstructured grids can also obtain con-
vergent solution in a very wide range of under-relaxation factor and its
computational efficiency is more than twice that of the SIMPLE algo-
rithm.

With advantages of fast convergence rate and strong robustness, the

* Corresponding authors at: School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.

E-mail addresses: sundongliang@bipt.edu.cn (D. Sun), yubobox@vip.163.com (B. Yu).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.08.004

0735-1933/ © 2017 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/07351933
http://www.elsevier.com/locate/ichmt
http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.08.004
http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.08.004
mailto:sundongliang@bipt.edu.cn
mailto:yubobox@vip.163.com
http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.08.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icheatmasstransfer.2017.08.004&domain=pdf

Y. Deng et al.

IDEAL algorithm is employed to solve incompressible and weak com-
pressible flows by many researchers. Tang et al. [13] and Shi et al. [14]
employed this algorithm to study the thermal optimization of the roofs
constructed with hollow concrete floor system. Lauriat's research group
extended the IDEAL algorithm to weak compressible flow [15]. Then,
they employed the IDEAL algorithm to simulate the natural convection
of the ideal gas non-dilution binary mixture in square cavity [15], the
hydrothermal convection in square cavity [16], and the wall con-
densation or evaporation in humid air-filled cavity [17]. Further, some
researchers employed this algorithm to solve two-phase flow and phase
change problems. Zhou et al. [18] simulated the gas-liquid two-phase
flow problems using the IDEAL algorithm based on unstructured tri-
angular grids. Qu et al. [19] developed a two-dimensional transient
model for a passive thermal management system of commercial square
lithium ion battery by using the phase change material (PCM) saturated
in metallic copper foam. In his model, the IDEAL algorithm is employed
to couple the velocity and pressure. Besides, the IDEAL algorithm has
also been applied to non-Newtonian fluid [20], multi-component [21],
and multi-scale [22-27] flows.

Based on the above analyses, the IDEAL algorithm has been ex-
tended to structured and unstructured grids, and has been applied to
incompressible and weak compressible, single-phase and two-phase,
Newtonian and non-Newtonian fluid, single-component and multi-
component, single-scale and multi-scale flow and heat transfer pro-
blems. However, the further development of the IDEAL algorithm en-
counters with two key issues. The first is that existing researches are
mainly based on in-house codes, which are hard to be mastered by
other researchers. The second is that the IDEAL algorithm is difficult to
be extended to complex engineering problems. In order to overcome
these two issues, the IDEAL algorithm is implemented in the world's
most widely used open source CFD software - OpenFOAM (Open Source
Field Operation and Manipulation). OpenFOAM supports arbitrary
polyhedral unstructured grids and massively parallel computing. It can
deal with large-scale complex fluid flow and heat transfer problems.
Furthermore, the software provides a ready-made framework for sci-
entific research and engineering application [28-33]. Therefore, based
on OpenFOAD, it is convenient for any researcher to employ the IDEAL
algorithm to solve the complex fluid flow problems. Many practical
engineering problems, such as turbine sitting, separation equipment,
heat exchanger, involve the steady-state incompressible flow and heat
transfer phenomena. The numerical calculations for these complex
problems sometimes have slow convergence rate and worse robustness,
and even cannot obtain convergent solution in some cases. Therefore, in
this paper, the IDEAL algorithm is implemented in OpenFOAM to solve
the complex steady-state incompressible fluid flow problems, and de-
monstrates the superiority of its solving performance.

The organizational structure of this article is as follows. The gov-
erning equations and discretization process are first introduced in
Section 2. Then, the calculation procedure and core code of the IDEAL
algorithm are presented in Section 3. Subsequently, the numerical
comparison conditions are given in Section 4. In Section 5, two test
cases are performed to compare the IDEAL algorithm with the SIMPLE
and SIMPLEC algorithms. Finally, the main conclusions are drawn.

2. Governing equations and discretization process

This section describes the governing equations for steady-state in-
compressible turbulent flow and the corresponding discretization pro-
cess on arbitrary polyhedral grids.

2.1. Governing equations

Continuity equation:
VU=0 @

where U is velocity vector.
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Table 1
Coefficients in standard k-¢ model.

Cu Ok O, G Cy
0.09 1.0 1.3 1.44 1.92
Momentum equation:
V-(UU) — V- [(v» + »)(VU + VUD)] = -Vp+g 2)

where v and v, denote the kinematic and turbulent viscosities, respec-
tively. p refers to the kinematic pressure. g is the gravitational accel-
eration.

In practical engineering, the standard k-¢ model, k-w model, and k-w
SST model are widely employed to model the turbulent flow.

The governing equations for the standard k-¢ model [34]:

V-(Uk) — V-(v + ﬂ)Vk =G-¢
Ok

€))

2
V.(Ue) — V~(v + ﬁ)v; =06t - <

A k k 4

where k is turbulent kinetic energy, ¢ is turbulent dissipation rate,
V= Cﬂk?z and G = 2v,|S;|% The corresponding coefficients in Egs. (3)
and (4) are shown in Table 1.

The governing equations for the k-w model [34]:

V-(Uk) = V-(v + ov,)Vk = G — C,wk 5)

®
V-(Uw) = V-(v + ayv) Vo = yG; — fw? ©)
where w is turbulent specific dissipation rate, v, = g The corresponding
coefficients in Egs. (5) and (6) are shown in Table 2.

The governing equations for the k-w SST model [34]:

V-(Uk) = V-(v + av,) Vk = min(G, ¢, f*kw) — S*kw ()
V-(Uw) — V-(v + au»)Vw = yS — Bw? — (F, — 1)CDyy, ®)
where
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Vk-Vo
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F, = tanh| min| min| max Vi ,& R _ dawk ,10)
Brwy yiw max(CDy,, 1e710)y?

2
F, = tanh [min(max( 2Vk s 500v ), 100)]
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The corresponding coefficients in Egs. (7)-(9) are shown in Table 3.

2.2. Discretization of governing equations

The above mentioned governing equations (Egs. (2)-(8)) can be
written in the following general form:

Table 2
Coefficients in k-w model.

a C, a, Y B

0.5 0.09 0.5 0.52 0.072
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