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ABSTRACT

This paper is a sequel on the topic of localized Lagrange multipliers (LLM) for applications of fluid-struc-
ture interaction (FSI) between finite-element models of an acoustic fluid and an elastic structure. The
prequel paper formulated the spatial-discretization methods, the LLM interface treatment, the
time-marching partitioned analysis procedures, and the application to 1D benchmark problems. Here,
we expand on formulation aspects required for successful application to more realistic 2D and 3D prob-
lems. Additional topics include duality relations at the fluid-structure interface, partitioned vibration
analysis, reduced-order modeling, handling of curved interface surfaces, and comparison of LLM with
other coupling methods. Emphasis is given to non-matching fluid-structure meshes. We present bench-
mark examples that illustrate the benefits and drawbacks of competing interface treatments. Realistic
application problems involving the seismic response of two existing dams are considered. These include
2D modal analyses of the Koyna gravity dam, transient-response analyses of that dam with and without
reduced-order modeling, incorporation of nonlinear cavitation effects, and the 3D transient-response
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analysis of the Morrow Point arch dam.
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1. Introduction

The prequel [35] to this paper presents the underlying theory
and analytical formulation for the first application of the method
of localized Lagrange multipliers (LLM) to treat the interaction be-
tween acoustic-fluid and elastic-structure finite-element (FE) mod-
els. That material includes proof-of-concept 1D examples with
known analytical solutions. No realistic benchmark application
examples were discussed, since those demand coverage of model-
ing with computer implementation and verification aspects that
would have lengthened and diluted the exposition. The present pa-
per addresses that gap. A methodology overview is given next in
the interest of self-sufficiency.

The LLM treatment introduces a kinematic frame at the fluid-
structure interface. Two multiplier fields separately connect the
frame to the fluid on one side and to the structure “wet surface” on
the other. Both multiplier spaces are discretized as delta functions
collocated at the fluid-interface and wet-surface structural nodes.
These can be physically interpreted as interaction point forces.
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The main goal of this new interface treatment is complete decou-
pling of fluid and structure models, in the sense that those can be
constructed separately by different teams, or with different mesh
generators. Consequently, finite-element meshes will not neces-
sarily match over the interface. This separation streamlines pre-
processing in design stages where one of the models, such as the
structure, is modified (e.g. by a design team) while the other is
fixed. Or, conversely, the fluid level could be changing while the
structure is fixed, as in reservoir filling or pumping operations. Full
decoupling also simplifies the production and use of reduced-order
models.

A second key goal is to allow processing by different programs.
For dynamic analysis by direct time integration, this is achieved
by combining the LLM method with a partitioned solution proce-
dure. The solution state is advanced separately on each program.
These programs exchange information through the interface as
they advance in time. The advancing sequence used here departs
from the well known predictor-based staggered schemes intro-
duced in [27]; in that, the interface state is solved implicitly for
frame accelerations and multiplier forces. The latter are back-
substituted into the fluid and structure solvers as if they were pro-
duced by an external force field. The stability analysis presented in
the prequel paper shows that if the same A-stable integration
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scheme, such as the trapezoidal rule, is chosen for the fluid and
structure with identical timesteps, the coupled system retains
unconditional stability. One obvious generalization pertains to
the use of different time-integration schemes for the fluid and
structure, e.g. implicit in the structure and explicit in the fluid
for resolving cavitation. In such cases, solutions may not necessar-
ily match in time either.

While the LLM method can provide modeling flexibility, new
challenges may be introduced. Even if separate non-interacting
models are satisfactory as regards to stability and accuracy, the
introduction of interaction can have adverse effects on the coupled
response. Furthermore, if the coupled components have widely dif-
ferent physical characteristics (stiffness, mass, etc.), the coupled
system may be scale-mismatched by orders of magnitude. This
can worsen the condition number of the algebraic interface system
and produce unacceptable errors, particularly under long-term
cyclic loading. Accuracy monitoring requires measures to assess
interface-energy conservation, whereas ill-conditioning effects
may be alleviated through multiplier scaling. Error measuring is
one of the practical implementation aspects omitted in the prequel
paper but covered here.

To assess the LLM treatment, as well as two competing methods
(Mortar and direct force-motion transfer) a realistic benchmark
application class is chosen: concrete dams subject to seismic exci-
tation. The computational models represent three physical compo-
nents: structure, soil and fluid. The structure and soil are
formulated as displacement-based elasticity energy equations,
which are discretized as conventional solid elements. The reservoir
water is modeled as a linear acoustic fluid since no significant flow
develops during the response timespan of interest. The displace-
ment potential is chosen as the response variable of the governing
fluid equations. This choice has the advantage of reducing the
number of degrees of freedom to one per node while automatically
enforcing irrotationality.

Two actual dam-reservoir configurations are studied: the
Koyna gravity dam in Maharashtra, India, and the Morrow Point
arch dam in Colorado, USA. A 2D plane-strain model is used for
the former and a 3D model is used for the latter. Both config-
urations involve the interaction of the structure, near-field soil
and entrained fluid. Silent boundaries are used to truncate the
fluid and soil meshes. In the gravity-dam example, the analysis
optionally includes inertial cavitation. This is a highly nonlinear
phenomenon whereupon the water elastic modulus drops to
near zero in the cavitation volume, and re-pressurizes produc-
ing traveling closure shocks. The gravity-dam problem is used
also to illustrate the analysis of coupled-system vibrations and
the construction and performance of reduced-order dynamic
models.

In addition to the two dam configurations, two additional
benchmark problems are included. First, the problem of Chopra
[7], which involves the 2D interaction of an unbounded acoustic
medium with a rigid wall (with prescribed motion) is used to val-
idate the pressure calculations and the silent boundary. Second,
the Bleich and Sandler [6] 1D fluid-structure interaction (FSI)
problem is used to validate the cavitation treatment.

2. Localized Lagrange multipliers
2.1. Equations of motion

Finite-element discretization of a linear acoustic fluid coupled
to an elastic structure with the interface treated by the LLM meth-
od yields the following semi-discrete matrix equations of motion
(EOM) in terms of displacements and interface forces as discussed
in [35] (damping and silent boundaries omitted for brevity):
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For the structure model, us is the array of structural node displace-
ments, whereas Ms, Ks and fs denote the master mass matrix, stiff-
ness matrix and applied-force vector, respectively, associated with
us. For the fluid model, ug is the array of fluid node displacements,
whereas My, Kr and fr denote the master mass matrix, stiffness ma-
trix and applied-force vector, respectively, associated with ur. Over
the LLM-treated FSI interface, up is the array of frame-node dis-
placements, 4s is the array of frame-to-structure interaction forces
at wet structural nodes, Ar is the array of frame-to-fluid interaction
forces at fluid nodes, Bs, and By, are Boolean matrices that map 4s
and Ar onto the full set of structure and fluid node forces, respec-
tively, Ls, and L, are matrices that map frame displacements up
to structure node freedoms and fluid node freedoms, respectively.
Structure and fluid nodes need not coincide over the interface. A
superposed dot denotes differentiation with respect to time, t.

Fluid irrotationality is enforced by the transformation ur = Dry,
where y collects displacement potential degrees of freedom at
fluid mesh nodes; Dr is a generally rectangular transformation ma-
trix. (Since the displacement potential is a scalar field, there is only
one  freedom per node.) A congruential transformation on fluid
freedoms yields
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in which My, = DIMD¢, K¢, = DIK¢Dg, Bgyn = DIBg, and fr, = DXf5,
where this equation corresponds to Eq. (22) in [35].

2.2. Reduced-order modeling

The reduced-order model (ROM) formulation considered here
reduces the number of normal coordinates by truncating modes
of the uncoupled problems. The resultant free-vibration eigenprob-
lems, both of generalized symmetric type, are

Ksvsi = CU?,-MsVsn (i=1,...,ms), KgVg= Cl)%,-MF./,VFn
(i=1,...,mp). 3)

(The left system in (3) is sometimes called the dry-structure eigen-
problem.) The eigenvectors are mass orthonormalized. The retained
“dry” eigenvectors for the structure are vg;, (i=1,... ks, ks < ms),
which are collected as columns of matrix ®s.. The retained eigen-
vectors for the fluid are wvg, (i=1,...,ks, kr <mf), which are
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